Add functionality to change primary metric for dataset
Browse files- backend/app/config/hf_config.py +2 -2
- backend/app/services/leaderboard.py +118 -67
- frontend/package.json +3 -2
- frontend/src/pages/LeaderboardPage/components/Leaderboard/components/Table/hooks/useDataProcessing.js +24 -9
- frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/defaults.js +1 -1
- frontend/src/pages/LeaderboardPage/components/Leaderboard/hooks/useDataUtils.js +286 -276
- frontend/src/pages/LeaderboardPage/components/Leaderboard/hooks/useSubscoreStore.js +15 -0
- frontend/src/pages/LeaderboardPage/components/Leaderboard/utils/columnUtils.js +660 -462
backend/app/config/hf_config.py
CHANGED
@@ -12,7 +12,7 @@ from app.utils.logging import LogFormatter
|
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
# Organization or user who owns the datasets
|
15 |
-
HF_ORGANIZATION = os.environ.get("HF_ORGANIZATION", "
|
16 |
|
17 |
# Get HF token directly from environment
|
18 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
@@ -23,7 +23,7 @@ if not HF_TOKEN:
|
|
23 |
API = HfApi(token=HF_TOKEN)
|
24 |
|
25 |
# Repository configuration
|
26 |
-
HF_AGGREGATED = os.environ.get("HF_AGGREGATED", "
|
27 |
QUEUE_REPO = f"{HF_ORGANIZATION}/requests"
|
28 |
AGGREGATED_REPO = f"{HF_ORGANIZATION}/{HF_AGGREGATED}"
|
29 |
VOTES_REPO = f"{HF_ORGANIZATION}/votes"
|
|
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
# Organization or user who owns the datasets
|
15 |
+
HF_ORGANIZATION = os.environ.get("HF_ORGANIZATION", "ymk00")
|
16 |
|
17 |
# Get HF token directly from environment
|
18 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
23 |
API = HfApi(token=HF_TOKEN)
|
24 |
|
25 |
# Repository configuration
|
26 |
+
HF_AGGREGATED = os.environ.get("HF_AGGREGATED", "dataset-test")
|
27 |
QUEUE_REPO = f"{HF_ORGANIZATION}/requests"
|
28 |
AGGREGATED_REPO = f"{HF_ORGANIZATION}/{HF_AGGREGATED}"
|
29 |
VOTES_REPO = f"{HF_ORGANIZATION}/votes"
|
backend/app/services/leaderboard.py
CHANGED
@@ -9,33 +9,38 @@ from app.utils.logging import LogFormatter
|
|
9 |
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
|
|
12 |
class LeaderboardService:
|
13 |
def __init__(self):
|
14 |
pass
|
15 |
-
|
16 |
async def fetch_raw_data(self) -> List[Dict[str, Any]]:
|
17 |
"""Fetch raw leaderboard data from HuggingFace dataset"""
|
18 |
try:
|
19 |
logger.info(LogFormatter.section("FETCHING LEADERBOARD DATA"))
|
20 |
-
logger.info(
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
dataset = datasets.load_dataset(
|
23 |
f"{HF_ORGANIZATION}/{HF_AGGREGATED}",
|
24 |
-
cache_dir=cache_config.get_cache_path("datasets")
|
25 |
)["train"]
|
26 |
-
|
27 |
df = dataset.to_pandas()
|
28 |
-
data = df.to_dict(
|
29 |
-
|
30 |
stats = {
|
31 |
"Total_Entries": len(data),
|
32 |
-
"Dataset_Size": f"{df.memory_usage(deep=True).sum() / 1024 / 1024:.1f}MB"
|
33 |
}
|
34 |
for line in LogFormatter.stats(stats, "Dataset Statistics"):
|
35 |
logger.info(line)
|
36 |
-
|
37 |
return data
|
38 |
-
|
39 |
except Exception as e:
|
40 |
logger.error(LogFormatter.error("Failed to fetch leaderboard data", e))
|
41 |
raise HTTPException(status_code=500, detail=str(e))
|
@@ -44,127 +49,163 @@ class LeaderboardService:
|
|
44 |
"""Get formatted leaderboard data"""
|
45 |
try:
|
46 |
logger.info(LogFormatter.section("FORMATTING LEADERBOARD DATA"))
|
47 |
-
|
48 |
raw_data = await self.fetch_raw_data()
|
49 |
formatted_data = []
|
50 |
type_counts = {}
|
51 |
error_count = 0
|
52 |
-
|
53 |
# Initialize progress tracking
|
54 |
total_items = len(raw_data)
|
55 |
logger.info(LogFormatter.info(f"Processing {total_items:,} entries..."))
|
56 |
-
|
57 |
for i, item in enumerate(raw_data, 1):
|
58 |
try:
|
59 |
formatted_item = await self.transform_data(item)
|
60 |
formatted_data.append(formatted_item)
|
61 |
-
|
62 |
# Count model types
|
63 |
model_type = formatted_item["model"]["type"]
|
64 |
type_counts[model_type] = type_counts.get(model_type, 0) + 1
|
65 |
-
|
66 |
except Exception as e:
|
67 |
error_count += 1
|
68 |
-
logger.error(
|
|
|
|
|
|
|
|
|
69 |
continue
|
70 |
-
|
71 |
# Log progress every 10%
|
72 |
if i % max(1, total_items // 10) == 0:
|
73 |
progress = (i / total_items) * 100
|
74 |
-
logger.info(
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
# Log final statistics
|
77 |
stats = {
|
78 |
"Total_Processed": total_items,
|
79 |
"Successful": len(formatted_data),
|
80 |
-
"Failed": error_count
|
81 |
}
|
82 |
logger.info(LogFormatter.section("PROCESSING SUMMARY"))
|
83 |
for line in LogFormatter.stats(stats, "Processing Statistics"):
|
84 |
logger.info(line)
|
85 |
-
|
86 |
# Log model type distribution
|
87 |
type_stats = {f"Type_{k}": v for k, v in type_counts.items()}
|
88 |
logger.info(LogFormatter.subsection("MODEL TYPE DISTRIBUTION"))
|
89 |
for line in LogFormatter.stats(type_stats):
|
90 |
logger.info(line)
|
91 |
-
|
92 |
return formatted_data
|
93 |
-
|
94 |
except Exception as e:
|
95 |
logger.error(LogFormatter.error("Failed to format leaderboard data", e))
|
96 |
raise HTTPException(status_code=500, detail=str(e))
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
async def transform_data(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
99 |
"""Transform raw data into the format expected by the frontend"""
|
100 |
try:
|
101 |
# Extract model name for logging
|
102 |
model_name = data.get("fullname", "Unknown")
|
103 |
-
logger.debug(
|
104 |
-
|
|
|
|
|
105 |
# Create unique ID combining model name, precision, sha and chat template status
|
106 |
unique_id = f"{data.get('fullname', 'Unknown')}_{data.get('Precision', 'Unknown')}_{data.get('Model sha', 'Unknown')}_{str(data.get('Chat Template', False))}"
|
107 |
-
|
108 |
evaluations = {
|
109 |
"bc5cdr_chemical": {
|
110 |
"name": "BC5CDR-chemical",
|
111 |
-
"value": data.get("BC5CDR-chemical Raw",
|
112 |
-
"normalized_score": data.get("BC5CDR-chemical",
|
113 |
},
|
114 |
"ncbi_disease": {
|
115 |
-
"name": "NCBI
|
116 |
-
"value": data.get("NCBI
|
117 |
-
"normalized_score": data.get("NCBI
|
118 |
},
|
119 |
"chemprot": {
|
120 |
"name": "ChemProt",
|
121 |
-
"value": data.get("ChemProt Raw",
|
122 |
-
"normalized_score": data.get("ChemProt",
|
123 |
},
|
124 |
"ddi2013": {
|
125 |
"name": "DDI2013",
|
126 |
-
"value": data.get("DDI2013 Raw",
|
127 |
-
"normalized_score": data.get("DDI2013",
|
128 |
},
|
129 |
"hoc": {
|
130 |
"name": "HoC",
|
131 |
-
"value": data.get("HoC Raw",
|
132 |
-
"normalized_score": data.get("HoC",
|
133 |
},
|
134 |
"litcovid": {
|
135 |
"name": "LitCovid",
|
136 |
-
"value": data.get("LitCovid Raw",
|
137 |
-
"normalized_score": data.get("LitCovid",
|
138 |
},
|
139 |
"medqa": {
|
140 |
"name": "MedQA (5-Option)",
|
141 |
-
"value": data.get("MedQA
|
142 |
-
"normalized_score": data.get("MedQA
|
143 |
},
|
144 |
"pubmedqa": {
|
145 |
"name": "PubMedQA",
|
146 |
-
"value": data.get("PubMedQA Raw",
|
147 |
-
"normalized_score": data.get("PubMedQA",
|
148 |
},
|
149 |
"pubmed": {
|
150 |
"name": "PubMed",
|
151 |
-
"value": data.get("PubMed Raw",
|
152 |
-
"normalized_score": data.get("PubMed",
|
153 |
},
|
154 |
"ms2": {
|
155 |
"name": "MS^2",
|
156 |
-
"value": data.get("MS^2 Raw",
|
157 |
-
"normalized_score": data.get("MS^2",
|
158 |
},
|
159 |
"cochrane_pls": {
|
160 |
"name": "Cochrane PLS",
|
161 |
-
"value": data.get("Cochrane PLS Raw",
|
162 |
-
"normalized_score": data.get("Cochrane PLS",
|
163 |
},
|
164 |
"plos": {
|
165 |
"name": "PLOS",
|
166 |
-
"value": data.get("PLOS Raw",
|
167 |
-
"normalized_score": data.get("PLOS",
|
168 |
},
|
169 |
}
|
170 |
|
@@ -173,7 +214,7 @@ class LeaderboardService:
|
|
173 |
"is_merged": data.get("Merged", False),
|
174 |
"is_moe": data.get("MoE", False),
|
175 |
"is_flagged": data.get("Flagged", False),
|
176 |
-
"is_highlighted_by_maintainer": data.get("Official Providers", False)
|
177 |
}
|
178 |
|
179 |
metadata = {
|
@@ -184,18 +225,18 @@ class LeaderboardService:
|
|
184 |
"hub_license": data.get("Hub License"),
|
185 |
"hub_hearts": data.get("Hub ❤️"),
|
186 |
"params_billions": data.get("#Params (B)"),
|
187 |
-
"co2_cost": data.get("CO₂ cost (kg)", 0)
|
188 |
}
|
189 |
|
190 |
# Clean model type by removing emojis if present
|
191 |
original_type = data.get("Type", "")
|
192 |
model_type = original_type.lower().strip()
|
193 |
-
|
194 |
# Remove emojis and parentheses
|
195 |
if "(" in model_type:
|
196 |
model_type = model_type.split("(")[0].strip()
|
197 |
-
model_type =
|
198 |
-
|
199 |
# Map old model types to new ones
|
200 |
model_type_mapping = {
|
201 |
"fine-tuned": "fined-tuned-on-domain-specific-dataset",
|
@@ -205,14 +246,18 @@ class LeaderboardService:
|
|
205 |
"ft": "fined-tuned-on-domain-specific-dataset",
|
206 |
"finetuning": "fined-tuned-on-domain-specific-dataset",
|
207 |
"fine tuning": "fined-tuned-on-domain-specific-dataset",
|
208 |
-
"fine-tuning": "fined-tuned-on-domain-specific-dataset"
|
209 |
}
|
210 |
|
211 |
mapped_type = model_type_mapping.get(model_type.lower().strip(), model_type)
|
212 |
-
|
213 |
if mapped_type != model_type:
|
214 |
-
logger.debug(
|
215 |
-
|
|
|
|
|
|
|
|
|
216 |
transformed_data = {
|
217 |
"id": unique_id,
|
218 |
"model": {
|
@@ -222,17 +267,23 @@ class LeaderboardService:
|
|
222 |
"type": mapped_type,
|
223 |
"weight_type": data.get("Weight type"),
|
224 |
"architecture": data.get("Architecture"),
|
225 |
-
"average_score":
|
226 |
-
"has_chat_template": data.get("Chat Template", False)
|
227 |
},
|
228 |
"evaluations": evaluations,
|
229 |
"features": features,
|
230 |
-
"metadata": metadata
|
231 |
}
|
232 |
-
|
233 |
-
logger.debug(
|
|
|
|
|
234 |
return transformed_data
|
235 |
-
|
236 |
except Exception as e:
|
237 |
-
logger.error(
|
|
|
|
|
|
|
|
|
238 |
raise
|
|
|
9 |
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
+
|
13 |
class LeaderboardService:
|
14 |
def __init__(self):
|
15 |
pass
|
16 |
+
|
17 |
async def fetch_raw_data(self) -> List[Dict[str, Any]]:
|
18 |
"""Fetch raw leaderboard data from HuggingFace dataset"""
|
19 |
try:
|
20 |
logger.info(LogFormatter.section("FETCHING LEADERBOARD DATA"))
|
21 |
+
logger.info(
|
22 |
+
LogFormatter.info(
|
23 |
+
f"Loading dataset from {HF_ORGANIZATION}/{HF_AGGREGATED}"
|
24 |
+
)
|
25 |
+
)
|
26 |
+
|
27 |
dataset = datasets.load_dataset(
|
28 |
f"{HF_ORGANIZATION}/{HF_AGGREGATED}",
|
29 |
+
cache_dir=cache_config.get_cache_path("datasets"),
|
30 |
)["train"]
|
31 |
+
|
32 |
df = dataset.to_pandas()
|
33 |
+
data = df.to_dict("records")
|
34 |
+
|
35 |
stats = {
|
36 |
"Total_Entries": len(data),
|
37 |
+
"Dataset_Size": f"{df.memory_usage(deep=True).sum() / 1024 / 1024:.1f}MB",
|
38 |
}
|
39 |
for line in LogFormatter.stats(stats, "Dataset Statistics"):
|
40 |
logger.info(line)
|
41 |
+
|
42 |
return data
|
43 |
+
|
44 |
except Exception as e:
|
45 |
logger.error(LogFormatter.error("Failed to fetch leaderboard data", e))
|
46 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
49 |
"""Get formatted leaderboard data"""
|
50 |
try:
|
51 |
logger.info(LogFormatter.section("FORMATTING LEADERBOARD DATA"))
|
52 |
+
|
53 |
raw_data = await self.fetch_raw_data()
|
54 |
formatted_data = []
|
55 |
type_counts = {}
|
56 |
error_count = 0
|
57 |
+
|
58 |
# Initialize progress tracking
|
59 |
total_items = len(raw_data)
|
60 |
logger.info(LogFormatter.info(f"Processing {total_items:,} entries..."))
|
61 |
+
|
62 |
for i, item in enumerate(raw_data, 1):
|
63 |
try:
|
64 |
formatted_item = await self.transform_data(item)
|
65 |
formatted_data.append(formatted_item)
|
66 |
+
|
67 |
# Count model types
|
68 |
model_type = formatted_item["model"]["type"]
|
69 |
type_counts[model_type] = type_counts.get(model_type, 0) + 1
|
70 |
+
|
71 |
except Exception as e:
|
72 |
error_count += 1
|
73 |
+
logger.error(
|
74 |
+
LogFormatter.error(
|
75 |
+
f"Failed to format entry {i}/{total_items}", e
|
76 |
+
)
|
77 |
+
)
|
78 |
continue
|
79 |
+
|
80 |
# Log progress every 10%
|
81 |
if i % max(1, total_items // 10) == 0:
|
82 |
progress = (i / total_items) * 100
|
83 |
+
logger.info(
|
84 |
+
LogFormatter.info(
|
85 |
+
f"Progress: {LogFormatter.progress_bar(i, total_items)}"
|
86 |
+
)
|
87 |
+
)
|
88 |
+
|
89 |
# Log final statistics
|
90 |
stats = {
|
91 |
"Total_Processed": total_items,
|
92 |
"Successful": len(formatted_data),
|
93 |
+
"Failed": error_count,
|
94 |
}
|
95 |
logger.info(LogFormatter.section("PROCESSING SUMMARY"))
|
96 |
for line in LogFormatter.stats(stats, "Processing Statistics"):
|
97 |
logger.info(line)
|
98 |
+
|
99 |
# Log model type distribution
|
100 |
type_stats = {f"Type_{k}": v for k, v in type_counts.items()}
|
101 |
logger.info(LogFormatter.subsection("MODEL TYPE DISTRIBUTION"))
|
102 |
for line in LogFormatter.stats(type_stats):
|
103 |
logger.info(line)
|
|
|
104 |
return formatted_data
|
105 |
+
|
106 |
except Exception as e:
|
107 |
logger.error(LogFormatter.error("Failed to format leaderboard data", e))
|
108 |
raise HTTPException(status_code=500, detail=str(e))
|
109 |
|
110 |
+
def _calculate_average_score(self, data: Dict[str, Any]) -> float:
|
111 |
+
scores = []
|
112 |
+
print(data)
|
113 |
+
for key in [
|
114 |
+
"BC5CDR-chemical",
|
115 |
+
"NCBI-disease",
|
116 |
+
"ChemProt",
|
117 |
+
"DDI2013",
|
118 |
+
"HoC",
|
119 |
+
"LitCovid",
|
120 |
+
"MedQA",
|
121 |
+
"PubMedQA",
|
122 |
+
"PubMed",
|
123 |
+
"MS^2",
|
124 |
+
"Cochrane PLS",
|
125 |
+
"PLOS",
|
126 |
+
]:
|
127 |
+
normalized = data.get(key, {})
|
128 |
+
if not isinstance(normalized, dict):
|
129 |
+
continue
|
130 |
+
|
131 |
+
for metric, value in normalized.items():
|
132 |
+
if metric in ["bart", "dcr", "fkg"]:
|
133 |
+
continue
|
134 |
+
if isinstance(value, (int, float)):
|
135 |
+
scores.append(value)
|
136 |
+
return sum(scores) / len(scores) if scores else 0.0
|
137 |
+
|
138 |
async def transform_data(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
139 |
"""Transform raw data into the format expected by the frontend"""
|
140 |
try:
|
141 |
# Extract model name for logging
|
142 |
model_name = data.get("fullname", "Unknown")
|
143 |
+
logger.debug(
|
144 |
+
LogFormatter.info(f"Transforming data for model: {model_name}")
|
145 |
+
)
|
146 |
+
|
147 |
# Create unique ID combining model name, precision, sha and chat template status
|
148 |
unique_id = f"{data.get('fullname', 'Unknown')}_{data.get('Precision', 'Unknown')}_{data.get('Model sha', 'Unknown')}_{str(data.get('Chat Template', False))}"
|
|
|
149 |
evaluations = {
|
150 |
"bc5cdr_chemical": {
|
151 |
"name": "BC5CDR-chemical",
|
152 |
+
"value": data.get("BC5CDR-chemical Raw", {}),
|
153 |
+
"normalized_score": data.get("BC5CDR-chemical", {}),
|
154 |
},
|
155 |
"ncbi_disease": {
|
156 |
+
"name": "NCBI-disease",
|
157 |
+
"value": data.get("NCBI-disease Raw", {}),
|
158 |
+
"normalized_score": data.get("NCBI-disease", {}),
|
159 |
},
|
160 |
"chemprot": {
|
161 |
"name": "ChemProt",
|
162 |
+
"value": data.get("ChemProt Raw", {}),
|
163 |
+
"normalized_score": data.get("ChemProt", {}),
|
164 |
},
|
165 |
"ddi2013": {
|
166 |
"name": "DDI2013",
|
167 |
+
"value": data.get("DDI2013 Raw", {}),
|
168 |
+
"normalized_score": data.get("DDI2013", {}),
|
169 |
},
|
170 |
"hoc": {
|
171 |
"name": "HoC",
|
172 |
+
"value": data.get("HoC Raw", {}),
|
173 |
+
"normalized_score": data.get("HoC", {}),
|
174 |
},
|
175 |
"litcovid": {
|
176 |
"name": "LitCovid",
|
177 |
+
"value": data.get("LitCovid Raw", {}),
|
178 |
+
"normalized_score": data.get("LitCovid", {}),
|
179 |
},
|
180 |
"medqa": {
|
181 |
"name": "MedQA (5-Option)",
|
182 |
+
"value": data.get("MedQA Raw", {}),
|
183 |
+
"normalized_score": data.get("MedQA", {}),
|
184 |
},
|
185 |
"pubmedqa": {
|
186 |
"name": "PubMedQA",
|
187 |
+
"value": data.get("PubMedQA Raw", {}),
|
188 |
+
"normalized_score": data.get("PubMedQA", {}),
|
189 |
},
|
190 |
"pubmed": {
|
191 |
"name": "PubMed",
|
192 |
+
"value": data.get("PubMed Raw", {}),
|
193 |
+
"normalized_score": data.get("PubMed", {}),
|
194 |
},
|
195 |
"ms2": {
|
196 |
"name": "MS^2",
|
197 |
+
"value": data.get("MS^2 Raw", {}),
|
198 |
+
"normalized_score": data.get("MS^2", {}),
|
199 |
},
|
200 |
"cochrane_pls": {
|
201 |
"name": "Cochrane PLS",
|
202 |
+
"value": data.get("Cochrane PLS Raw", {}),
|
203 |
+
"normalized_score": data.get("Cochrane PLS", {}),
|
204 |
},
|
205 |
"plos": {
|
206 |
"name": "PLOS",
|
207 |
+
"value": data.get("PLOS Raw", {}),
|
208 |
+
"normalized_score": data.get("PLOS", {}),
|
209 |
},
|
210 |
}
|
211 |
|
|
|
214 |
"is_merged": data.get("Merged", False),
|
215 |
"is_moe": data.get("MoE", False),
|
216 |
"is_flagged": data.get("Flagged", False),
|
217 |
+
"is_highlighted_by_maintainer": data.get("Official Providers", False),
|
218 |
}
|
219 |
|
220 |
metadata = {
|
|
|
225 |
"hub_license": data.get("Hub License"),
|
226 |
"hub_hearts": data.get("Hub ❤️"),
|
227 |
"params_billions": data.get("#Params (B)"),
|
228 |
+
"co2_cost": data.get("CO₂ cost (kg)", 0),
|
229 |
}
|
230 |
|
231 |
# Clean model type by removing emojis if present
|
232 |
original_type = data.get("Type", "")
|
233 |
model_type = original_type.lower().strip()
|
234 |
+
|
235 |
# Remove emojis and parentheses
|
236 |
if "(" in model_type:
|
237 |
model_type = model_type.split("(")[0].strip()
|
238 |
+
model_type = "".join(c for c in model_type if not c in "🔶🟢🟩💬🤝🌸 ")
|
239 |
+
|
240 |
# Map old model types to new ones
|
241 |
model_type_mapping = {
|
242 |
"fine-tuned": "fined-tuned-on-domain-specific-dataset",
|
|
|
246 |
"ft": "fined-tuned-on-domain-specific-dataset",
|
247 |
"finetuning": "fined-tuned-on-domain-specific-dataset",
|
248 |
"fine tuning": "fined-tuned-on-domain-specific-dataset",
|
249 |
+
"fine-tuning": "fined-tuned-on-domain-specific-dataset",
|
250 |
}
|
251 |
|
252 |
mapped_type = model_type_mapping.get(model_type.lower().strip(), model_type)
|
253 |
+
|
254 |
if mapped_type != model_type:
|
255 |
+
logger.debug(
|
256 |
+
LogFormatter.info(
|
257 |
+
f"Model type mapped: {original_type} -> {mapped_type}"
|
258 |
+
)
|
259 |
+
)
|
260 |
+
|
261 |
transformed_data = {
|
262 |
"id": unique_id,
|
263 |
"model": {
|
|
|
267 |
"type": mapped_type,
|
268 |
"weight_type": data.get("Weight type"),
|
269 |
"architecture": data.get("Architecture"),
|
270 |
+
"average_score": self._calculate_average_score(data),
|
271 |
+
"has_chat_template": data.get("Chat Template", False),
|
272 |
},
|
273 |
"evaluations": evaluations,
|
274 |
"features": features,
|
275 |
+
"metadata": metadata,
|
276 |
}
|
277 |
+
|
278 |
+
logger.debug(
|
279 |
+
LogFormatter.success(f"Successfully transformed data for {model_name}")
|
280 |
+
)
|
281 |
return transformed_data
|
282 |
+
|
283 |
except Exception as e:
|
284 |
+
logger.error(
|
285 |
+
LogFormatter.error(
|
286 |
+
f"Failed to transform data for {data.get('fullname', 'Unknown')}", e
|
287 |
+
)
|
288 |
+
)
|
289 |
raise
|
frontend/package.json
CHANGED
@@ -24,7 +24,8 @@
|
|
24 |
"react-router-dom": "^6.28.0",
|
25 |
"react-scripts": "5.0.1",
|
26 |
"serve-static": "^1.15.0",
|
27 |
-
"web-vitals": "^2.1.4"
|
|
|
28 |
},
|
29 |
"scripts": {
|
30 |
"start": "react-scripts start",
|
@@ -51,5 +52,5 @@
|
|
51 |
"last 1 safari version"
|
52 |
]
|
53 |
},
|
54 |
-
"proxy": "http://
|
55 |
}
|
|
|
24 |
"react-router-dom": "^6.28.0",
|
25 |
"react-scripts": "5.0.1",
|
26 |
"serve-static": "^1.15.0",
|
27 |
+
"web-vitals": "^2.1.4",
|
28 |
+
"zustand": "^5.0.3"
|
29 |
},
|
30 |
"scripts": {
|
31 |
"start": "react-scripts start",
|
|
|
52 |
"last 1 safari version"
|
53 |
]
|
54 |
},
|
55 |
+
"proxy": "http://localhost:8000"
|
56 |
}
|
frontend/src/pages/LeaderboardPage/components/Leaderboard/components/Table/hooks/useDataProcessing.js
CHANGED
@@ -13,6 +13,7 @@ import {
|
|
13 |
useFilteredData,
|
14 |
useColumnVisibility,
|
15 |
} from "../../../hooks/useDataUtils";
|
|
|
16 |
|
17 |
export const useDataProcessing = (
|
18 |
data,
|
@@ -116,14 +117,14 @@ export const useDataProcessing = (
|
|
116 |
defaultColumn: {
|
117 |
sortingFn: (rowA, rowB, columnId) => {
|
118 |
const isDesc = sorting?.[0]?.desc;
|
119 |
-
|
120 |
if (rowA.original.isPinned && rowB.original.isPinned) {
|
121 |
return (
|
122 |
pinnedModels.indexOf(rowA.original.id) -
|
123 |
pinnedModels.indexOf(rowB.original.id)
|
124 |
);
|
125 |
}
|
126 |
-
|
127 |
if (isDesc) {
|
128 |
if (rowA.original.isPinned) return -1;
|
129 |
if (rowB.original.isPinned) return 1;
|
@@ -131,17 +132,31 @@ export const useDataProcessing = (
|
|
131 |
if (rowA.original.isPinned) return -1;
|
132 |
if (rowB.original.isPinned) return 1;
|
133 |
}
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
if (typeof aValue === "number" && typeof bValue === "number") {
|
139 |
return aValue - bValue;
|
140 |
}
|
141 |
-
|
142 |
-
return String(aValue).localeCompare(String(bValue));
|
143 |
},
|
144 |
-
},
|
145 |
}),
|
146 |
[filteredData, columns, sorting, columnVisibility, pinnedModels, setSorting]
|
147 |
);
|
|
|
13 |
useFilteredData,
|
14 |
useColumnVisibility,
|
15 |
} from "../../../hooks/useDataUtils";
|
16 |
+
import { useSubscoreStore } from "../../../hooks/useSubscoreStore";
|
17 |
|
18 |
export const useDataProcessing = (
|
19 |
data,
|
|
|
117 |
defaultColumn: {
|
118 |
sortingFn: (rowA, rowB, columnId) => {
|
119 |
const isDesc = sorting?.[0]?.desc;
|
120 |
+
|
121 |
if (rowA.original.isPinned && rowB.original.isPinned) {
|
122 |
return (
|
123 |
pinnedModels.indexOf(rowA.original.id) -
|
124 |
pinnedModels.indexOf(rowB.original.id)
|
125 |
);
|
126 |
}
|
127 |
+
|
128 |
if (isDesc) {
|
129 |
if (rowA.original.isPinned) return -1;
|
130 |
if (rowB.original.isPinned) return 1;
|
|
|
132 |
if (rowA.original.isPinned) return -1;
|
133 |
if (rowB.original.isPinned) return 1;
|
134 |
}
|
135 |
+
|
136 |
+
let aValue = rowA.getValue(columnId);
|
137 |
+
let bValue = rowB.getValue(columnId);
|
138 |
+
|
139 |
+
if (aValue && typeof aValue === "object") {
|
140 |
+
const selected =
|
141 |
+
useSubscoreStore.getState().selections[columnId] ||
|
142 |
+
Object.keys(aValue)[0];
|
143 |
+
aValue = aValue[selected];
|
144 |
+
}
|
145 |
+
|
146 |
+
if (bValue && typeof bValue === "object") {
|
147 |
+
const selected =
|
148 |
+
useSubscoreStore.getState().selections[columnId] ||
|
149 |
+
Object.keys(bValue)[0];
|
150 |
+
bValue = bValue[selected];
|
151 |
+
}
|
152 |
+
|
153 |
if (typeof aValue === "number" && typeof bValue === "number") {
|
154 |
return aValue - bValue;
|
155 |
}
|
156 |
+
|
157 |
+
return String(aValue || "").localeCompare(String(bValue || ""));
|
158 |
},
|
159 |
+
},
|
160 |
}),
|
161 |
[filteredData, columns, sorting, columnVisibility, pinnedModels, setSorting]
|
162 |
);
|
frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/defaults.js
CHANGED
@@ -78,7 +78,7 @@ const COLUMN_SIZES = {
|
|
78 |
TYPE_ICON: 65,
|
79 |
MODEL: 400,
|
80 |
AVERAGE_SCORE: 150,
|
81 |
-
BENCHMARK:
|
82 |
CO2_COST: 140,
|
83 |
HUB_HEARTS: 140,
|
84 |
ARCHITECTURE: 210,
|
|
|
78 |
TYPE_ICON: 65,
|
79 |
MODEL: 400,
|
80 |
AVERAGE_SCORE: 150,
|
81 |
+
BENCHMARK: 300,
|
82 |
CO2_COST: 140,
|
83 |
HUB_HEARTS: 140,
|
84 |
ARCHITECTURE: 210,
|
frontend/src/pages/LeaderboardPage/components/Leaderboard/hooks/useDataUtils.js
CHANGED
@@ -1,274 +1,103 @@
|
|
1 |
import { useMemo } from "react";
|
2 |
import {
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
} from "../utils/searchUtils";
|
7 |
|
8 |
// Calculate min/max averages
|
9 |
export const useAverageRange = (data) => {
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
};
|
18 |
|
19 |
// Generate colors for scores
|
20 |
export const useColorGenerator = (minAverage, maxAverage) => {
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
36 |
};
|
37 |
|
38 |
// Process data with boolean standardization
|
39 |
export const useProcessedData = (data, averageMode, visibleColumns) => {
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
93 |
};
|
94 |
|
95 |
// Common filtering logic
|
96 |
export const useFilteredData = (
|
97 |
-
processedData,
|
98 |
-
selectedPrecisions,
|
99 |
-
selectedTypes,
|
100 |
-
paramsRange,
|
101 |
-
searchValue,
|
102 |
-
selectedBooleanFilters,
|
103 |
-
rankingMode,
|
104 |
-
pinnedModels = [],
|
105 |
-
isOfficialProviderActive = false
|
106 |
-
) => {
|
107 |
-
return useMemo(() => {
|
108 |
-
const pinnedData = processedData.filter((row) => {
|
109 |
-
return pinnedModels.includes(row.id);
|
110 |
-
});
|
111 |
-
const unpinnedData = processedData.filter((row) => {
|
112 |
-
return !pinnedModels.includes(row.id);
|
113 |
-
});
|
114 |
-
|
115 |
-
let filteredUnpinned = unpinnedData;
|
116 |
-
|
117 |
-
// Filter by official providers
|
118 |
-
if (isOfficialProviderActive) {
|
119 |
-
filteredUnpinned = filteredUnpinned.filter(
|
120 |
-
(row) =>
|
121 |
-
row.features?.is_highlighted_by_maintainer ||
|
122 |
-
row.metadata?.is_highlighted_by_maintainer
|
123 |
-
);
|
124 |
-
}
|
125 |
-
|
126 |
-
// Filter by precision
|
127 |
-
if (selectedPrecisions.length > 0) {
|
128 |
-
filteredUnpinned = filteredUnpinned.filter((row) =>
|
129 |
-
selectedPrecisions.includes(row.model.precision)
|
130 |
-
);
|
131 |
-
}
|
132 |
-
|
133 |
-
// Filter by type
|
134 |
-
if (selectedTypes.length > 0) {
|
135 |
-
filteredUnpinned = filteredUnpinned.filter((row) => {
|
136 |
-
const modelType = row.model.type?.toLowerCase().trim();
|
137 |
-
return selectedTypes.some((type) => modelType?.includes(type));
|
138 |
-
});
|
139 |
-
}
|
140 |
-
|
141 |
-
// Filter by parameters
|
142 |
-
filteredUnpinned = filteredUnpinned.filter((row) => {
|
143 |
-
// Skip parameter filtering if no filter is active
|
144 |
-
if (paramsRange[0] === -1 && paramsRange[1] === 140) return true;
|
145 |
-
|
146 |
-
const params =
|
147 |
-
row.metadata?.params_billions || row.features?.params_billions;
|
148 |
-
if (params === undefined || params === null) return false;
|
149 |
-
return params >= paramsRange[0] && params < paramsRange[1];
|
150 |
-
});
|
151 |
-
|
152 |
-
// Filter by search
|
153 |
-
if (searchValue) {
|
154 |
-
const searchQueries = searchValue
|
155 |
-
.split(";")
|
156 |
-
.map((q) => q.trim())
|
157 |
-
.filter((q) => q);
|
158 |
-
if (searchQueries.length > 0) {
|
159 |
-
filteredUnpinned = filteredUnpinned.filter((row) => {
|
160 |
-
return searchQueries.some((query) => {
|
161 |
-
const { specialSearches, textSearch } = parseSearchQuery(query);
|
162 |
-
|
163 |
-
const specialSearchMatch = specialSearches.every(
|
164 |
-
({ field, value }) => {
|
165 |
-
const fieldValue = getValueByPath(row, field)
|
166 |
-
?.toString()
|
167 |
-
.toLowerCase();
|
168 |
-
return fieldValue?.includes(value.toLowerCase());
|
169 |
-
}
|
170 |
-
);
|
171 |
-
|
172 |
-
if (!specialSearchMatch) return false;
|
173 |
-
if (!textSearch) return true;
|
174 |
-
|
175 |
-
const modelName = row.model.name.toLowerCase();
|
176 |
-
const searchLower = textSearch.toLowerCase();
|
177 |
-
|
178 |
-
if (looksLikeRegex(textSearch)) {
|
179 |
-
try {
|
180 |
-
const regex = new RegExp(textSearch, "i");
|
181 |
-
return regex.test(modelName);
|
182 |
-
} catch (e) {
|
183 |
-
return modelName.includes(searchLower);
|
184 |
-
}
|
185 |
-
} else {
|
186 |
-
return modelName.includes(searchLower);
|
187 |
-
}
|
188 |
-
});
|
189 |
-
});
|
190 |
-
}
|
191 |
-
}
|
192 |
-
|
193 |
-
// Filter by booleans
|
194 |
-
if (selectedBooleanFilters.length > 0) {
|
195 |
-
filteredUnpinned = filteredUnpinned.filter((row) => {
|
196 |
-
return selectedBooleanFilters.every((filter) => {
|
197 |
-
const filterValue =
|
198 |
-
typeof filter === "object" ? filter.value : filter;
|
199 |
-
|
200 |
-
// Maintainer's Highlight keeps positive logic
|
201 |
-
if (filterValue === "is_highlighted_by_maintainer") {
|
202 |
-
return row.features[filterValue];
|
203 |
-
}
|
204 |
-
|
205 |
-
// For all other filters, invert the logic
|
206 |
-
if (filterValue === "is_not_available_on_hub") {
|
207 |
-
return row.features[filterValue];
|
208 |
-
}
|
209 |
-
|
210 |
-
return !row.features[filterValue];
|
211 |
-
});
|
212 |
-
});
|
213 |
-
}
|
214 |
-
|
215 |
-
// Create ordered array of pinned models respecting pinnedModels order
|
216 |
-
const orderedPinnedData = pinnedModels
|
217 |
-
.map((pinnedModelId) =>
|
218 |
-
pinnedData.find((item) => item.id === pinnedModelId)
|
219 |
-
)
|
220 |
-
.filter(Boolean);
|
221 |
-
|
222 |
-
// Combine all filtered data
|
223 |
-
const allFilteredData = [...filteredUnpinned, ...orderedPinnedData];
|
224 |
-
|
225 |
-
// Sort all data by average_score for dynamic_rank
|
226 |
-
const sortedByScore = [...allFilteredData].sort((a, b) => {
|
227 |
-
// Si les scores moyens sont différents, trier par score
|
228 |
-
if (a.model.average_score !== b.model.average_score) {
|
229 |
-
if (a.model.average_score === null && b.model.average_score === null)
|
230 |
-
return 0;
|
231 |
-
if (a.model.average_score === null) return 1;
|
232 |
-
if (b.model.average_score === null) return -1;
|
233 |
-
return b.model.average_score - a.model.average_score;
|
234 |
-
}
|
235 |
-
|
236 |
-
// Si les scores sont égaux, comparer le nom du modèle et la date de soumission
|
237 |
-
if (a.model.name === b.model.name) {
|
238 |
-
// Si même nom, trier par date de soumission (la plus récente d'abord)
|
239 |
-
const dateA = new Date(a.metadata?.submission_date || 0);
|
240 |
-
const dateB = new Date(b.metadata?.submission_date || 0);
|
241 |
-
return dateB - dateA;
|
242 |
-
}
|
243 |
-
|
244 |
-
// Si noms différents, trier par nom
|
245 |
-
return a.model.name.localeCompare(b.model.name);
|
246 |
-
});
|
247 |
-
|
248 |
-
// Create Map to store dynamic_ranks
|
249 |
-
const dynamicRankMap = new Map();
|
250 |
-
sortedByScore.forEach((item, index) => {
|
251 |
-
dynamicRankMap.set(item.id, index + 1);
|
252 |
-
});
|
253 |
-
|
254 |
-
// Add ranks to final data
|
255 |
-
const finalData = [...orderedPinnedData, ...filteredUnpinned].map(
|
256 |
-
(item) => {
|
257 |
-
return {
|
258 |
-
...item,
|
259 |
-
dynamic_rank: dynamicRankMap.get(item.id),
|
260 |
-
rank: item.isPinned
|
261 |
-
? pinnedModels.indexOf(item.id) + 1
|
262 |
-
: rankingMode === "static"
|
263 |
-
? item.static_rank
|
264 |
-
: dynamicRankMap.get(item.id),
|
265 |
-
isPinned: pinnedModels.includes(item.id),
|
266 |
-
};
|
267 |
-
}
|
268 |
-
);
|
269 |
-
|
270 |
-
return finalData;
|
271 |
-
}, [
|
272 |
processedData,
|
273 |
selectedPrecisions,
|
274 |
selectedTypes,
|
@@ -276,32 +105,213 @@ export const useFilteredData = (
|
|
276 |
searchValue,
|
277 |
selectedBooleanFilters,
|
278 |
rankingMode,
|
279 |
-
pinnedModels,
|
280 |
-
isOfficialProviderActive
|
281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
};
|
283 |
|
284 |
// Column visibility management
|
285 |
export const useColumnVisibility = (visibleColumns = []) => {
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
|
|
|
|
|
|
|
|
298 |
}
|
299 |
-
|
300 |
-
}
|
301 |
-
|
302 |
-
|
303 |
-
return visibility;
|
304 |
-
}, [visibleColumns]);
|
305 |
-
|
306 |
-
return columnVisibility;
|
307 |
};
|
|
|
1 |
import { useMemo } from "react";
|
2 |
import {
|
3 |
+
looksLikeRegex,
|
4 |
+
parseSearchQuery,
|
5 |
+
getValueByPath,
|
6 |
} from "../utils/searchUtils";
|
7 |
|
8 |
// Calculate min/max averages
|
9 |
export const useAverageRange = (data) => {
|
10 |
+
return useMemo(() => {
|
11 |
+
const averages = data.map((item) => item.model.average_score);
|
12 |
+
return {
|
13 |
+
minAverage: Math.min(...averages),
|
14 |
+
maxAverage: Math.max(...averages),
|
15 |
+
};
|
16 |
+
}, [data]);
|
17 |
};
|
18 |
|
19 |
// Generate colors for scores
|
20 |
export const useColorGenerator = (minAverage, maxAverage) => {
|
21 |
+
return useMemo(() => {
|
22 |
+
const colorCache = new Map();
|
23 |
+
return (value) => {
|
24 |
+
const cached = colorCache.get(value);
|
25 |
+
if (cached) return cached;
|
26 |
+
|
27 |
+
const normalizedValue =
|
28 |
+
(value - minAverage) / (maxAverage - minAverage);
|
29 |
+
const red = Math.round(255 * (1 - normalizedValue) * 1);
|
30 |
+
const green = Math.round(255 * normalizedValue) * 1;
|
31 |
+
// const color = `rgba(${red}, ${green}, 0, 1)`;
|
32 |
+
const color = `rgba(${red}, 0, ${green}, 1)`;
|
33 |
+
colorCache.set(value, color);
|
34 |
+
return color;
|
35 |
+
};
|
36 |
+
}, [minAverage, maxAverage]);
|
37 |
};
|
38 |
|
39 |
// Process data with boolean standardization
|
40 |
export const useProcessedData = (data, averageMode, visibleColumns) => {
|
41 |
+
return useMemo(() => {
|
42 |
+
let processed = data.map((item) => {
|
43 |
+
const evaluationScores = Object.entries(item.evaluations)
|
44 |
+
.filter(([key]) => {
|
45 |
+
if (averageMode === "all") return true;
|
46 |
+
return visibleColumns.includes(
|
47 |
+
`evaluations.${key}.normalized_score`
|
48 |
+
);
|
49 |
+
})
|
50 |
+
.flatMap(([, value]) =>
|
51 |
+
Object.entries(value.normalized_score || {})
|
52 |
+
.filter(([metric]) => metric !== "bert")
|
53 |
+
.map(([, val]) => val)
|
54 |
+
);
|
55 |
+
|
56 |
+
// Boolean standardization
|
57 |
+
const standardizedFeatures = {
|
58 |
+
...item.features,
|
59 |
+
is_moe: Boolean(item.features.is_moe),
|
60 |
+
is_flagged: Boolean(item.features.is_flagged),
|
61 |
+
is_highlighted_by_maintainer: Boolean(
|
62 |
+
item.features.is_highlighted_by_maintainer
|
63 |
+
),
|
64 |
+
is_merged: Boolean(item.features.is_merged),
|
65 |
+
is_not_available_on_hub: Boolean(
|
66 |
+
item.features.is_not_available_on_hub
|
67 |
+
),
|
68 |
+
};
|
69 |
+
|
70 |
+
return {
|
71 |
+
...item,
|
72 |
+
features: standardizedFeatures,
|
73 |
+
model: {
|
74 |
+
...item.model,
|
75 |
+
has_chat_template: Boolean(item.model.has_chat_template),
|
76 |
+
average_score: item.model.average_score,
|
77 |
+
},
|
78 |
+
};
|
79 |
+
});
|
80 |
+
|
81 |
+
processed.sort((a, b) => {
|
82 |
+
if (
|
83 |
+
a.model.average_score === null &&
|
84 |
+
b.model.average_score === null
|
85 |
+
)
|
86 |
+
return 0;
|
87 |
+
if (a.model.average_score === null) return 1;
|
88 |
+
if (b.model.average_score === null) return -1;
|
89 |
+
return b.model.average_score - a.model.average_score;
|
90 |
+
});
|
91 |
+
|
92 |
+
return processed.map((item, index) => ({
|
93 |
+
...item,
|
94 |
+
static_rank: index + 1,
|
95 |
+
}));
|
96 |
+
}, [data, averageMode, visibleColumns]);
|
97 |
};
|
98 |
|
99 |
// Common filtering logic
|
100 |
export const useFilteredData = (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
processedData,
|
102 |
selectedPrecisions,
|
103 |
selectedTypes,
|
|
|
105 |
searchValue,
|
106 |
selectedBooleanFilters,
|
107 |
rankingMode,
|
108 |
+
pinnedModels = [],
|
109 |
+
isOfficialProviderActive = false
|
110 |
+
) => {
|
111 |
+
return useMemo(() => {
|
112 |
+
const pinnedData = processedData.filter((row) => {
|
113 |
+
return pinnedModels.includes(row.id);
|
114 |
+
});
|
115 |
+
const unpinnedData = processedData.filter((row) => {
|
116 |
+
return !pinnedModels.includes(row.id);
|
117 |
+
});
|
118 |
+
|
119 |
+
let filteredUnpinned = unpinnedData;
|
120 |
+
|
121 |
+
// Filter by official providers
|
122 |
+
if (isOfficialProviderActive) {
|
123 |
+
filteredUnpinned = filteredUnpinned.filter(
|
124 |
+
(row) =>
|
125 |
+
row.features?.is_highlighted_by_maintainer ||
|
126 |
+
row.metadata?.is_highlighted_by_maintainer
|
127 |
+
);
|
128 |
+
}
|
129 |
+
|
130 |
+
// Filter by precision
|
131 |
+
if (selectedPrecisions.length > 0) {
|
132 |
+
filteredUnpinned = filteredUnpinned.filter((row) =>
|
133 |
+
selectedPrecisions.includes(row.model.precision)
|
134 |
+
);
|
135 |
+
}
|
136 |
+
|
137 |
+
// Filter by type
|
138 |
+
if (selectedTypes.length > 0) {
|
139 |
+
filteredUnpinned = filteredUnpinned.filter((row) => {
|
140 |
+
const modelType = row.model.type?.toLowerCase().trim();
|
141 |
+
return selectedTypes.some((type) => modelType?.includes(type));
|
142 |
+
});
|
143 |
+
}
|
144 |
+
|
145 |
+
// Filter by parameters
|
146 |
+
filteredUnpinned = filteredUnpinned.filter((row) => {
|
147 |
+
// Skip parameter filtering if no filter is active
|
148 |
+
if (paramsRange[0] === -1 && paramsRange[1] === 140) return true;
|
149 |
+
|
150 |
+
const params =
|
151 |
+
row.metadata?.params_billions || row.features?.params_billions;
|
152 |
+
if (params === undefined || params === null) return false;
|
153 |
+
return params >= paramsRange[0] && params < paramsRange[1];
|
154 |
+
});
|
155 |
+
|
156 |
+
// Filter by search
|
157 |
+
if (searchValue) {
|
158 |
+
const searchQueries = searchValue
|
159 |
+
.split(";")
|
160 |
+
.map((q) => q.trim())
|
161 |
+
.filter((q) => q);
|
162 |
+
if (searchQueries.length > 0) {
|
163 |
+
filteredUnpinned = filteredUnpinned.filter((row) => {
|
164 |
+
return searchQueries.some((query) => {
|
165 |
+
const { specialSearches, textSearch } =
|
166 |
+
parseSearchQuery(query);
|
167 |
+
|
168 |
+
const specialSearchMatch = specialSearches.every(
|
169 |
+
({ field, value }) => {
|
170 |
+
const fieldValue = getValueByPath(row, field)
|
171 |
+
?.toString()
|
172 |
+
.toLowerCase();
|
173 |
+
return fieldValue?.includes(
|
174 |
+
value.toLowerCase()
|
175 |
+
);
|
176 |
+
}
|
177 |
+
);
|
178 |
+
|
179 |
+
if (!specialSearchMatch) return false;
|
180 |
+
if (!textSearch) return true;
|
181 |
+
|
182 |
+
const modelName = row.model.name.toLowerCase();
|
183 |
+
const searchLower = textSearch.toLowerCase();
|
184 |
+
|
185 |
+
if (looksLikeRegex(textSearch)) {
|
186 |
+
try {
|
187 |
+
const regex = new RegExp(textSearch, "i");
|
188 |
+
return regex.test(modelName);
|
189 |
+
} catch (e) {
|
190 |
+
return modelName.includes(searchLower);
|
191 |
+
}
|
192 |
+
} else {
|
193 |
+
return modelName.includes(searchLower);
|
194 |
+
}
|
195 |
+
});
|
196 |
+
});
|
197 |
+
}
|
198 |
+
}
|
199 |
+
|
200 |
+
// Filter by booleans
|
201 |
+
if (selectedBooleanFilters.length > 0) {
|
202 |
+
filteredUnpinned = filteredUnpinned.filter((row) => {
|
203 |
+
return selectedBooleanFilters.every((filter) => {
|
204 |
+
const filterValue =
|
205 |
+
typeof filter === "object" ? filter.value : filter;
|
206 |
+
|
207 |
+
// Maintainer's Highlight keeps positive logic
|
208 |
+
if (filterValue === "is_highlighted_by_maintainer") {
|
209 |
+
return row.features[filterValue];
|
210 |
+
}
|
211 |
+
|
212 |
+
// For all other filters, invert the logic
|
213 |
+
if (filterValue === "is_not_available_on_hub") {
|
214 |
+
return row.features[filterValue];
|
215 |
+
}
|
216 |
+
|
217 |
+
return !row.features[filterValue];
|
218 |
+
});
|
219 |
+
});
|
220 |
+
}
|
221 |
+
|
222 |
+
// Create ordered array of pinned models respecting pinnedModels order
|
223 |
+
const orderedPinnedData = pinnedModels
|
224 |
+
.map((pinnedModelId) =>
|
225 |
+
pinnedData.find((item) => item.id === pinnedModelId)
|
226 |
+
)
|
227 |
+
.filter(Boolean);
|
228 |
+
|
229 |
+
// Combine all filtered data
|
230 |
+
const allFilteredData = [...filteredUnpinned, ...orderedPinnedData];
|
231 |
+
|
232 |
+
// Sort all data by average_score for dynamic_rank
|
233 |
+
const sortedByScore = [...allFilteredData].sort((a, b) => {
|
234 |
+
// Si les scores moyens sont différents, trier par score
|
235 |
+
if (a.model.average_score !== b.model.average_score) {
|
236 |
+
if (
|
237 |
+
a.model.average_score === null &&
|
238 |
+
b.model.average_score === null
|
239 |
+
)
|
240 |
+
return 0;
|
241 |
+
if (a.model.average_score === null) return 1;
|
242 |
+
if (b.model.average_score === null) return -1;
|
243 |
+
return b.model.average_score - a.model.average_score;
|
244 |
+
}
|
245 |
+
|
246 |
+
// Si les scores sont égaux, comparer le nom du modèle et la date de soumission
|
247 |
+
if (a.model.name === b.model.name) {
|
248 |
+
// Si même nom, trier par date de soumission (la plus récente d'abord)
|
249 |
+
const dateA = new Date(a.metadata?.submission_date || 0);
|
250 |
+
const dateB = new Date(b.metadata?.submission_date || 0);
|
251 |
+
return dateB - dateA;
|
252 |
+
}
|
253 |
+
|
254 |
+
// Si noms différents, trier par nom
|
255 |
+
return a.model.name.localeCompare(b.model.name);
|
256 |
+
});
|
257 |
+
|
258 |
+
// Create Map to store dynamic_ranks
|
259 |
+
const dynamicRankMap = new Map();
|
260 |
+
sortedByScore.forEach((item, index) => {
|
261 |
+
dynamicRankMap.set(item.id, index + 1);
|
262 |
+
});
|
263 |
+
|
264 |
+
// Add ranks to final data
|
265 |
+
const finalData = [...orderedPinnedData, ...filteredUnpinned].map(
|
266 |
+
(item) => {
|
267 |
+
return {
|
268 |
+
...item,
|
269 |
+
dynamic_rank: dynamicRankMap.get(item.id),
|
270 |
+
rank: item.isPinned
|
271 |
+
? pinnedModels.indexOf(item.id) + 1
|
272 |
+
: rankingMode === "static"
|
273 |
+
? item.static_rank
|
274 |
+
: dynamicRankMap.get(item.id),
|
275 |
+
isPinned: pinnedModels.includes(item.id),
|
276 |
+
};
|
277 |
+
}
|
278 |
+
);
|
279 |
+
|
280 |
+
return finalData;
|
281 |
+
}, [
|
282 |
+
processedData,
|
283 |
+
selectedPrecisions,
|
284 |
+
selectedTypes,
|
285 |
+
paramsRange,
|
286 |
+
searchValue,
|
287 |
+
selectedBooleanFilters,
|
288 |
+
rankingMode,
|
289 |
+
pinnedModels,
|
290 |
+
isOfficialProviderActive,
|
291 |
+
]);
|
292 |
};
|
293 |
|
294 |
// Column visibility management
|
295 |
export const useColumnVisibility = (visibleColumns = []) => {
|
296 |
+
// Create secure visibility object
|
297 |
+
const columnVisibility = useMemo(() => {
|
298 |
+
// Check visible columns
|
299 |
+
const safeVisibleColumns = Array.isArray(visibleColumns)
|
300 |
+
? visibleColumns
|
301 |
+
: [];
|
302 |
+
|
303 |
+
const visibility = {};
|
304 |
+
try {
|
305 |
+
safeVisibleColumns.forEach((columnKey) => {
|
306 |
+
if (typeof columnKey === "string") {
|
307 |
+
visibility[columnKey] = true;
|
308 |
+
}
|
309 |
+
});
|
310 |
+
} catch (error) {
|
311 |
+
console.warn("Error in useColumnVisibility:", error);
|
312 |
}
|
313 |
+
return visibility;
|
314 |
+
}, [visibleColumns]);
|
315 |
+
|
316 |
+
return columnVisibility;
|
|
|
|
|
|
|
|
|
317 |
};
|
frontend/src/pages/LeaderboardPage/components/Leaderboard/hooks/useSubscoreStore.js
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import { create } from "zustand";
|
2 |
+
|
3 |
+
// TODO: maybe subscore isn't the best name
|
4 |
+
const useSubscoreStore = create((set) => ({
|
5 |
+
selections: {},
|
6 |
+
setSelection: (key, value) =>
|
7 |
+
set((state) => ({
|
8 |
+
selections: {
|
9 |
+
...state.selections,
|
10 |
+
[key]: value,
|
11 |
+
},
|
12 |
+
})),
|
13 |
+
}));
|
14 |
+
|
15 |
+
export { useSubscoreStore };
|
frontend/src/pages/LeaderboardPage/components/Leaderboard/utils/columnUtils.js
CHANGED
@@ -1,5 +1,15 @@
|
|
1 |
-
import React from "react";
|
2 |
-
import {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import { getModelTypeIcon } from "../constants/modelTypes";
|
4 |
import TrendingUpIcon from "@mui/icons-material/TrendingUp";
|
5 |
import TrendingDownIcon from "@mui/icons-material/TrendingDown";
|
@@ -11,445 +21,567 @@ import { looksLikeRegex, extractTextSearch } from "./searchUtils";
|
|
11 |
import { commonStyles } from "../styles/common";
|
12 |
import { typeColumnSort } from "../components/Table/hooks/useSorting";
|
13 |
import {
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
} from "../constants/tooltips";
|
18 |
import OpenInNewIcon from "@mui/icons-material/OpenInNew";
|
19 |
import { alpha } from "@mui/material/styles";
|
20 |
import InfoIconWithTooltip from "../../../../../components/shared/InfoIconWithTooltip";
|
|
|
21 |
|
22 |
const DatabaseIcon = () => (
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
);
|
58 |
|
59 |
const HighlightedText = ({ text, searchValue }) => {
|
60 |
-
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
|
69 |
-
|
70 |
-
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
|
87 |
-
|
88 |
-
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
102 |
});
|
103 |
-
}
|
104 |
-
});
|
105 |
-
});
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
143 |
};
|
144 |
|
145 |
const MEDAL_STYLES = {
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
};
|
165 |
|
166 |
const getMedalStyle = (rank) => {
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
return {
|
170 |
-
|
171 |
-
|
172 |
-
fontStretch: "150%",
|
173 |
-
fontFamily: '"Inter", -apple-system, sans-serif',
|
174 |
-
width: "24px",
|
175 |
-
height: "24px",
|
176 |
-
background: medalStyle.background,
|
177 |
-
border: "1px solid",
|
178 |
-
borderColor: medalStyle.borderColor,
|
179 |
-
borderRadius: "50%",
|
180 |
-
display: "flex",
|
181 |
-
alignItems: "center",
|
182 |
-
justifyContent: "center",
|
183 |
-
fontSize: "0.95rem",
|
184 |
-
lineHeight: 1,
|
185 |
-
padding: 0,
|
186 |
-
boxShadow: `1px 1px 0 ${medalStyle.shadowColor}`,
|
187 |
-
position: "relative",
|
188 |
};
|
189 |
-
}
|
190 |
-
return {
|
191 |
-
color: "inherit",
|
192 |
-
fontWeight: rank <= 10 ? 600 : 400,
|
193 |
-
};
|
194 |
};
|
195 |
|
196 |
const getRankStyle = (rank) => getMedalStyle(rank);
|
197 |
|
198 |
const RankIndicator = ({ rank, previousRank, mode }) => {
|
199 |
-
|
200 |
|
201 |
-
|
202 |
-
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
};
|
215 |
|
216 |
return (
|
217 |
-
<Tooltip
|
218 |
-
title={`${Math.abs(change)} position${
|
219 |
-
Math.abs(change) > 1 ? "s" : ""
|
220 |
-
} ${change > 0 ? "up" : "down"}`}
|
221 |
-
arrow
|
222 |
-
placement="right"
|
223 |
-
>
|
224 |
<Box
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
}}
|
232 |
>
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
</Box>
|
235 |
-
</Tooltip>
|
236 |
);
|
237 |
-
};
|
238 |
-
|
239 |
-
return (
|
240 |
-
<Box
|
241 |
-
sx={{
|
242 |
-
display: "flex",
|
243 |
-
alignItems: "center",
|
244 |
-
justifyContent: "center",
|
245 |
-
width: "100%",
|
246 |
-
}}
|
247 |
-
>
|
248 |
-
<Typography
|
249 |
-
sx={{
|
250 |
-
...getRankStyle(rank),
|
251 |
-
display: "flex",
|
252 |
-
alignItems: "center",
|
253 |
-
lineHeight: 1,
|
254 |
-
position: "relative",
|
255 |
-
}}
|
256 |
-
>
|
257 |
-
{rank <= 3 ? (
|
258 |
-
<>
|
259 |
-
<Box component="span" sx={{ position: "relative", zIndex: 1 }}>
|
260 |
-
{rank}
|
261 |
-
</Box>
|
262 |
-
<RankChangeIndicator change={rankChange} />
|
263 |
-
</>
|
264 |
-
) : (
|
265 |
-
<>
|
266 |
-
<Box component="span" sx={{ position: "relative", zIndex: 1 }}>
|
267 |
-
{rank}
|
268 |
-
</Box>
|
269 |
-
<RankChangeIndicator change={rankChange} />
|
270 |
-
</>
|
271 |
-
)}
|
272 |
-
</Typography>
|
273 |
-
</Box>
|
274 |
-
);
|
275 |
};
|
276 |
|
277 |
const getDetailsUrl = (modelName) => {
|
278 |
-
|
279 |
-
|
280 |
};
|
281 |
|
282 |
const HeaderLabel = ({ label, tooltip, className, isSorted }) => (
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
>
|
290 |
-
<Typography
|
291 |
-
className={className}
|
292 |
-
sx={{
|
293 |
-
fontWeight: 600,
|
294 |
-
color: isSorted ? "primary.main" : "grey.700",
|
295 |
-
flex: 1,
|
296 |
-
transition: "max-width 0.2s ease",
|
297 |
-
maxWidth: "100%",
|
298 |
-
...(label === "Rank" || label === "Type"
|
299 |
-
? {
|
300 |
-
overflow: "visible",
|
301 |
-
whiteSpace: "normal",
|
302 |
-
textOverflow: "clip",
|
303 |
-
textAlign: "center",
|
304 |
-
}
|
305 |
-
: {
|
306 |
-
overflow: "hidden",
|
307 |
-
textOverflow: "ellipsis",
|
308 |
-
whiteSpace: "nowrap",
|
309 |
-
}),
|
310 |
-
"@media (hover: hover)": {
|
311 |
-
".MuiTableCell-root:hover &": {
|
312 |
-
maxWidth: tooltip ? "calc(100% - 48px)" : "100%",
|
313 |
-
},
|
314 |
-
},
|
315 |
-
}}
|
316 |
>
|
317 |
-
|
318 |
-
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
320 |
);
|
321 |
|
322 |
const InfoIcon = ({ tooltip }) => (
|
323 |
-
<Box
|
324 |
-
component="span"
|
325 |
-
sx={{
|
326 |
-
opacity: 0.5,
|
327 |
-
display: "flex",
|
328 |
-
alignItems: "center",
|
329 |
-
ml: 0.5,
|
330 |
-
}}
|
331 |
-
>
|
332 |
-
<InfoIconWithTooltip tooltip={tooltip} />
|
333 |
-
</Box>
|
334 |
-
);
|
335 |
-
|
336 |
-
const createHeaderCell = (label, tooltip) => (header) =>
|
337 |
-
(
|
338 |
<Box
|
339 |
-
|
340 |
-
sx={{
|
341 |
-
display: "flex",
|
342 |
-
alignItems: "center",
|
343 |
-
width: "100%",
|
344 |
-
position: "relative",
|
345 |
-
}}
|
346 |
-
>
|
347 |
-
<HeaderLabel
|
348 |
-
label={label}
|
349 |
-
tooltip={tooltip}
|
350 |
-
className="header-label"
|
351 |
-
isSorted={header?.column?.getIsSorted()}
|
352 |
-
/>
|
353 |
-
|
354 |
-
<Box
|
355 |
sx={{
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
flexShrink: 0,
|
361 |
}}
|
362 |
-
|
363 |
-
|
364 |
-
</Box>
|
365 |
</Box>
|
366 |
-
|
367 |
|
368 |
-
const
|
369 |
-
|
370 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
return (
|
372 |
-
<Box
|
373 |
-
sx={{
|
374 |
-
display: "flex",
|
375 |
-
alignItems: "center",
|
376 |
-
justifyContent: "space-between",
|
377 |
-
width: "100%",
|
378 |
-
}}
|
379 |
-
>
|
380 |
<Box
|
381 |
-
|
382 |
-
display: "flex",
|
383 |
-
alignItems: "center",
|
384 |
-
gap: 1,
|
385 |
-
}}
|
386 |
-
>
|
387 |
-
<Typography
|
388 |
sx={{
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
whiteSpace: "nowrap",
|
394 |
}}
|
395 |
-
|
396 |
-
|
397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
</Box>
|
399 |
-
</Box>
|
400 |
);
|
401 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
402 |
|
403 |
const BooleanValue = ({ value }) => {
|
404 |
-
|
405 |
-
|
406 |
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
};
|
442 |
|
443 |
export const createColumns = (
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
) => {
|
454 |
// Ajuster les tailles des colonnes en fonction de la présence de lignes épinglées
|
455 |
const getColumnSize = (defaultSize) =>
|
@@ -650,8 +782,13 @@ export const createColumns = (
|
|
650 |
{
|
651 |
accessorKey: "model.average_score",
|
652 |
header: createHeaderCell("Average", COLUMN_TOOLTIPS.AVERAGE),
|
653 |
-
cell: ({ row, getValue }) =>
|
654 |
-
|
|
|
|
|
|
|
|
|
|
|
655 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["model.average_score"],
|
656 |
meta: {
|
657 |
headerStyle: {
|
@@ -684,13 +821,23 @@ export const createColumns = (
|
|
684 |
},
|
685 |
},
|
686 |
];
|
687 |
-
|
688 |
-
|
689 |
const rawValue = field.includes("normalized")
|
690 |
? row.original.evaluations[field.split(".")[1]]?.value
|
691 |
-
:
|
|
|
|
|
|
|
|
|
|
|
|
|
692 |
|
693 |
const isAverageColumn = field === "model.average_score";
|
|
|
|
|
|
|
|
|
694 |
const hasNoValue = value === null || value === undefined;
|
695 |
|
696 |
return (
|
@@ -738,7 +885,7 @@ export const createColumns = (
|
|
738 |
"-"
|
739 |
) : (
|
740 |
<>
|
741 |
-
|
742 |
<>
|
743 |
{value.toFixed(2)}
|
744 |
<span style={{ opacity: 0.5 }}> %</span>
|
@@ -764,14 +911,16 @@ export const createColumns = (
|
|
764 |
accessorKey: "evaluations.bc5cdr_chemical.normalized_score",
|
765 |
header: createHeaderCell(
|
766 |
"BC5CDR-chemical",
|
767 |
-
COLUMN_TOOLTIPS.BC5CDR_CHEMICAL
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
768 |
),
|
769 |
-
cell: ({ row, getValue }) =>
|
770 |
-
createScoreCell(
|
771 |
-
getValue,
|
772 |
-
row,
|
773 |
-
"evaluations.bc5cdr_chemical.normalized_score"
|
774 |
-
),
|
775 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
776 |
"evaluations.bc5cdr_chemical.normalized_score"
|
777 |
],
|
@@ -780,118 +929,160 @@ export const createColumns = (
|
|
780 |
accessorKey: "evaluations.ncbi_disease.normalized_score",
|
781 |
header: createHeaderCell(
|
782 |
"NCBI Disease",
|
783 |
-
COLUMN_TOOLTIPS.NCBI_DISEASE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
784 |
),
|
785 |
-
cell: ({ row, getValue }) =>
|
786 |
-
createScoreCell(
|
787 |
-
getValue,
|
788 |
-
row,
|
789 |
-
"evaluations.ncbi_disease.normalized_score"
|
790 |
-
),
|
791 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
792 |
"evaluations.ncbi_disease.normalized_score"
|
793 |
],
|
794 |
},
|
795 |
{
|
796 |
accessorKey: "evaluations.chemprot.normalized_score",
|
797 |
-
header: createHeaderCell(
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
|
|
|
|
|
|
|
|
|
|
804 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
805 |
"evaluations.chemprot.normalized_score"
|
806 |
],
|
807 |
},
|
808 |
{
|
809 |
accessorKey: "evaluations.ddi2013.normalized_score",
|
810 |
-
header: createHeaderCell(
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
|
|
|
|
|
|
|
|
|
|
817 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
818 |
"evaluations.ddi2013.normalized_score"
|
819 |
],
|
820 |
},
|
821 |
{
|
822 |
accessorKey: "evaluations.hoc.normalized_score",
|
823 |
-
header: createHeaderCell(
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
|
|
|
|
|
|
|
|
|
|
830 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
831 |
"evaluations.hoc.normalized_score"
|
832 |
],
|
833 |
},
|
834 |
{
|
835 |
accessorKey: "evaluations.litcovid.normalized_score",
|
836 |
-
header: createHeaderCell(
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
|
|
|
|
|
|
|
|
|
|
843 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
844 |
"evaluations.litcovid.normalized_score"
|
845 |
],
|
846 |
},
|
847 |
{
|
848 |
accessorKey: "evaluations.medqa.normalized_score",
|
849 |
-
header: createHeaderCell(
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
|
|
|
|
|
|
|
|
|
|
856 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
857 |
"evaluations.medqa.normalized_score"
|
858 |
],
|
859 |
},
|
860 |
{
|
861 |
accessorKey: "evaluations.pubmedqa.normalized_score",
|
862 |
-
header: createHeaderCell(
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
|
|
|
|
|
|
|
|
|
|
|
869 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
870 |
"evaluations.pubmedqa.normalized_score"
|
871 |
],
|
872 |
},
|
873 |
{
|
874 |
accessorKey: "evaluations.pubmed.normalized_score",
|
875 |
-
header: createHeaderCell(
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
|
|
|
|
|
|
|
|
|
|
882 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
883 |
"evaluations.pubmed.normalized_score"
|
884 |
],
|
885 |
},
|
886 |
{
|
887 |
accessorKey: "evaluations.ms2.normalized_score",
|
888 |
-
header: createHeaderCell(
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
|
|
|
|
|
|
|
|
|
|
895 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
896 |
"evaluations.ms2.normalized_score"
|
897 |
],
|
@@ -900,27 +1091,34 @@ export const createColumns = (
|
|
900 |
accessorKey: "evaluations.cochrane_pls.normalized_score",
|
901 |
header: createHeaderCell(
|
902 |
"Cochrane PLS",
|
903 |
-
COLUMN_TOOLTIPS.COCHRANE_PLS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
904 |
),
|
905 |
-
cell: ({ row, getValue }) =>
|
906 |
-
createScoreCell(
|
907 |
-
getValue,
|
908 |
-
row,
|
909 |
-
"evaluations.cochrane_pls.normalized_score"
|
910 |
-
),
|
911 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
912 |
"evaluations.cochrane_pls.normalized_score"
|
913 |
],
|
914 |
},
|
915 |
{
|
916 |
accessorKey: "evaluations.plos.normalized_score",
|
917 |
-
header: createHeaderCell(
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
|
|
|
|
|
|
|
|
|
|
924 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
925 |
"evaluations.plos.normalized_score"
|
926 |
],
|
|
|
1 |
+
import React, { useState } from "react";
|
2 |
+
import {
|
3 |
+
Box,
|
4 |
+
Typography,
|
5 |
+
Link,
|
6 |
+
Tooltip,
|
7 |
+
IconButton,
|
8 |
+
Badge,
|
9 |
+
Chip,
|
10 |
+
Menu,
|
11 |
+
MenuItem,
|
12 |
+
} from "@mui/material";
|
13 |
import { getModelTypeIcon } from "../constants/modelTypes";
|
14 |
import TrendingUpIcon from "@mui/icons-material/TrendingUp";
|
15 |
import TrendingDownIcon from "@mui/icons-material/TrendingDown";
|
|
|
21 |
import { commonStyles } from "../styles/common";
|
22 |
import { typeColumnSort } from "../components/Table/hooks/useSorting";
|
23 |
import {
|
24 |
+
COLUMN_TOOLTIPS,
|
25 |
+
getTooltipStyle,
|
26 |
+
TABLE_TOOLTIPS,
|
27 |
} from "../constants/tooltips";
|
28 |
import OpenInNewIcon from "@mui/icons-material/OpenInNew";
|
29 |
import { alpha } from "@mui/material/styles";
|
30 |
import InfoIconWithTooltip from "../../../../../components/shared/InfoIconWithTooltip";
|
31 |
+
import { useSubscoreStore } from "../hooks/useSubscoreStore";
|
32 |
|
33 |
const DatabaseIcon = () => (
|
34 |
+
<svg
|
35 |
+
className="mr-1.5 text-gray-400 group-hover:text-red-500"
|
36 |
+
xmlns="http://www.w3.org/2000/svg"
|
37 |
+
aria-hidden="true"
|
38 |
+
focusable="false"
|
39 |
+
role="img"
|
40 |
+
width="1.4em"
|
41 |
+
height="1.4em"
|
42 |
+
preserveAspectRatio="xMidYMid meet"
|
43 |
+
viewBox="0 0 25 25"
|
44 |
+
>
|
45 |
+
<ellipse
|
46 |
+
cx="12.5"
|
47 |
+
cy="5"
|
48 |
+
fill="currentColor"
|
49 |
+
fillOpacity="0.25"
|
50 |
+
rx="7.5"
|
51 |
+
ry="2"
|
52 |
+
></ellipse>
|
53 |
+
<path
|
54 |
+
d="M12.5 15C16.6421 15 20 14.1046 20 13V20C20 21.1046 16.6421 22 12.5 22C8.35786 22 5 21.1046 5 20V13C5 14.1046 8.35786 15 12.5 15Z"
|
55 |
+
fill="currentColor"
|
56 |
+
opacity="0.5"
|
57 |
+
></path>
|
58 |
+
<path
|
59 |
+
d="M12.5 7C16.6421 7 20 6.10457 20 5V11.5C20 12.6046 16.6421 13.5 12.5 13.5C8.35786 13.5 5 12.6046 5 11.5V5C5 6.10457 8.35786 7 12.5 7Z"
|
60 |
+
fill="currentColor"
|
61 |
+
opacity="0.5"
|
62 |
+
></path>
|
63 |
+
<path
|
64 |
+
d="M5.23628 12C5.08204 12.1598 5 12.8273 5 13C5 14.1046 8.35786 15 12.5 15C16.6421 15 20 14.1046 20 13C20 12.8273 19.918 12.1598 19.7637 12C18.9311 12.8626 15.9947 13.5 12.5 13.5C9.0053 13.5 6.06886 12.8626 5.23628 12Z"
|
65 |
+
fill="currentColor"
|
66 |
+
></path>
|
67 |
+
</svg>
|
68 |
);
|
69 |
|
70 |
const HighlightedText = ({ text, searchValue }) => {
|
71 |
+
if (!searchValue) return text;
|
72 |
|
73 |
+
const searches = searchValue
|
74 |
+
.split(";")
|
75 |
+
.map((s) => s.trim())
|
76 |
+
.filter(Boolean);
|
77 |
+
let result = text;
|
78 |
+
let fragments = [{ text: result, isMatch: false }];
|
79 |
|
80 |
+
searches.forEach((search, searchIndex) => {
|
81 |
+
if (!search) return;
|
82 |
|
83 |
+
try {
|
84 |
+
let regex;
|
85 |
+
if (looksLikeRegex(search)) {
|
86 |
+
regex = new RegExp(search, "gi");
|
87 |
+
} else {
|
88 |
+
regex = new RegExp(
|
89 |
+
search.replace(/[.*+?^${}()|[\]\\]/g, "\\$&"),
|
90 |
+
"gi"
|
91 |
+
);
|
92 |
+
}
|
93 |
|
94 |
+
const newFragments = [];
|
95 |
+
fragments.forEach((fragment) => {
|
96 |
+
if (fragment.isMatch) {
|
97 |
+
newFragments.push(fragment);
|
98 |
+
return;
|
99 |
+
}
|
100 |
|
101 |
+
const parts = fragment.text.split(regex);
|
102 |
+
const matches = fragment.text.match(regex);
|
103 |
|
104 |
+
if (!matches) {
|
105 |
+
newFragments.push(fragment);
|
106 |
+
return;
|
107 |
+
}
|
108 |
|
109 |
+
parts.forEach((part, i) => {
|
110 |
+
if (part) newFragments.push({ text: part, isMatch: false });
|
111 |
+
if (i < parts.length - 1) {
|
112 |
+
newFragments.push({
|
113 |
+
text: matches[i],
|
114 |
+
isMatch: true,
|
115 |
+
colorIndex: searchIndex % HIGHLIGHT_COLORS.length,
|
116 |
+
});
|
117 |
+
}
|
118 |
+
});
|
119 |
});
|
|
|
|
|
|
|
120 |
|
121 |
+
fragments = newFragments;
|
122 |
+
} catch (e) {
|
123 |
+
console.warn("Invalid regex:", search);
|
124 |
+
}
|
125 |
+
});
|
126 |
|
127 |
+
return (
|
128 |
+
<>
|
129 |
+
{fragments.map((fragment, i) =>
|
130 |
+
fragment.isMatch ? (
|
131 |
+
<Box
|
132 |
+
key={i}
|
133 |
+
component="span"
|
134 |
+
sx={{
|
135 |
+
backgroundColor:
|
136 |
+
HIGHLIGHT_COLORS[fragment.colorIndex],
|
137 |
+
color: (theme) =>
|
138 |
+
theme.palette.getContrastText(
|
139 |
+
HIGHLIGHT_COLORS[fragment.colorIndex]
|
140 |
+
),
|
141 |
+
fontWeight: 500,
|
142 |
+
px: 0.5,
|
143 |
+
py: "2px",
|
144 |
+
borderRadius: "3px",
|
145 |
+
mx: "1px",
|
146 |
+
overflow: "visible",
|
147 |
+
display: "inline-block",
|
148 |
+
}}
|
149 |
+
>
|
150 |
+
{fragment.text}
|
151 |
+
</Box>
|
152 |
+
) : (
|
153 |
+
<React.Fragment key={i}>{fragment.text}</React.Fragment>
|
154 |
+
)
|
155 |
+
)}
|
156 |
+
</>
|
157 |
+
);
|
158 |
};
|
159 |
|
160 |
const MEDAL_STYLES = {
|
161 |
+
1: {
|
162 |
+
color: "#B58A1B",
|
163 |
+
background: "linear-gradient(135deg, #FFF7E0 0%, #FFD700 100%)",
|
164 |
+
borderColor: "rgba(212, 160, 23, 0.35)",
|
165 |
+
shadowColor: "rgba(212, 160, 23, 0.8)",
|
166 |
+
},
|
167 |
+
2: {
|
168 |
+
color: "#667380",
|
169 |
+
background: "linear-gradient(135deg, #FFFFFF 0%, #D8E3ED 100%)",
|
170 |
+
borderColor: "rgba(124, 139, 153, 0.35)",
|
171 |
+
shadowColor: "rgba(124, 139, 153, 0.8)",
|
172 |
+
},
|
173 |
+
3: {
|
174 |
+
color: "#B85C2F",
|
175 |
+
background: "linear-gradient(135deg, #FDF0E9 0%, #FFBC8C 100%)",
|
176 |
+
borderColor: "rgba(204, 108, 61, 0.35)",
|
177 |
+
shadowColor: "rgba(204, 108, 61, 0.8)",
|
178 |
+
},
|
179 |
};
|
180 |
|
181 |
const getMedalStyle = (rank) => {
|
182 |
+
if (rank <= 3) {
|
183 |
+
const medalStyle = MEDAL_STYLES[rank];
|
184 |
+
return {
|
185 |
+
color: medalStyle.color,
|
186 |
+
fontWeight: 900,
|
187 |
+
fontStretch: "150%",
|
188 |
+
fontFamily: '"Inter", -apple-system, sans-serif',
|
189 |
+
width: "24px",
|
190 |
+
height: "24px",
|
191 |
+
background: medalStyle.background,
|
192 |
+
border: "1px solid",
|
193 |
+
borderColor: medalStyle.borderColor,
|
194 |
+
borderRadius: "50%",
|
195 |
+
display: "flex",
|
196 |
+
alignItems: "center",
|
197 |
+
justifyContent: "center",
|
198 |
+
fontSize: "0.95rem",
|
199 |
+
lineHeight: 1,
|
200 |
+
padding: 0,
|
201 |
+
boxShadow: `1px 1px 0 ${medalStyle.shadowColor}`,
|
202 |
+
position: "relative",
|
203 |
+
};
|
204 |
+
}
|
205 |
return {
|
206 |
+
color: "inherit",
|
207 |
+
fontWeight: rank <= 10 ? 600 : 400,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
};
|
|
|
|
|
|
|
|
|
|
|
209 |
};
|
210 |
|
211 |
const getRankStyle = (rank) => getMedalStyle(rank);
|
212 |
|
213 |
const RankIndicator = ({ rank, previousRank, mode }) => {
|
214 |
+
const rankChange = previousRank ? previousRank - rank : 0;
|
215 |
|
216 |
+
const RankChangeIndicator = ({ change }) => {
|
217 |
+
if (!change || mode === "dynamic") return null;
|
218 |
|
219 |
+
const getChangeColor = (change) => {
|
220 |
+
if (change > 0) return "success.main";
|
221 |
+
if (change < 0) return "error.main";
|
222 |
+
return "grey.500";
|
223 |
+
};
|
224 |
|
225 |
+
const getChangeIcon = (change) => {
|
226 |
+
if (change > 0) return <TrendingUpIcon sx={{ fontSize: "1rem" }} />;
|
227 |
+
if (change < 0)
|
228 |
+
return <TrendingDownIcon sx={{ fontSize: "1rem" }} />;
|
229 |
+
return <RemoveIcon sx={{ fontSize: "1rem" }} />;
|
230 |
+
};
|
231 |
+
|
232 |
+
return (
|
233 |
+
<Tooltip
|
234 |
+
title={`${Math.abs(change)} position${
|
235 |
+
Math.abs(change) > 1 ? "s" : ""
|
236 |
+
} ${change > 0 ? "up" : "down"}`}
|
237 |
+
arrow
|
238 |
+
placement="right"
|
239 |
+
>
|
240 |
+
<Box
|
241 |
+
sx={{
|
242 |
+
display: "flex",
|
243 |
+
alignItems: "center",
|
244 |
+
color: getChangeColor(change),
|
245 |
+
ml: 0.5,
|
246 |
+
fontSize: "0.75rem",
|
247 |
+
}}
|
248 |
+
>
|
249 |
+
{getChangeIcon(change)}
|
250 |
+
</Box>
|
251 |
+
</Tooltip>
|
252 |
+
);
|
253 |
};
|
254 |
|
255 |
return (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
<Box
|
257 |
+
sx={{
|
258 |
+
display: "flex",
|
259 |
+
alignItems: "center",
|
260 |
+
justifyContent: "center",
|
261 |
+
width: "100%",
|
262 |
+
}}
|
|
|
263 |
>
|
264 |
+
<Typography
|
265 |
+
sx={{
|
266 |
+
...getRankStyle(rank),
|
267 |
+
display: "flex",
|
268 |
+
alignItems: "center",
|
269 |
+
lineHeight: 1,
|
270 |
+
position: "relative",
|
271 |
+
}}
|
272 |
+
>
|
273 |
+
{rank <= 3 ? (
|
274 |
+
<>
|
275 |
+
<Box
|
276 |
+
component="span"
|
277 |
+
sx={{ position: "relative", zIndex: 1 }}
|
278 |
+
>
|
279 |
+
{rank}
|
280 |
+
</Box>
|
281 |
+
<RankChangeIndicator change={rankChange} />
|
282 |
+
</>
|
283 |
+
) : (
|
284 |
+
<>
|
285 |
+
<Box
|
286 |
+
component="span"
|
287 |
+
sx={{ position: "relative", zIndex: 1 }}
|
288 |
+
>
|
289 |
+
{rank}
|
290 |
+
</Box>
|
291 |
+
<RankChangeIndicator change={rankChange} />
|
292 |
+
</>
|
293 |
+
)}
|
294 |
+
</Typography>
|
295 |
</Box>
|
|
|
296 |
);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
};
|
298 |
|
299 |
const getDetailsUrl = (modelName) => {
|
300 |
+
const formattedName = modelName.replace("/", "__");
|
301 |
+
return `https://huggingface.co/datasets/TheFinAI/lm-eval-results-private`;
|
302 |
};
|
303 |
|
304 |
const HeaderLabel = ({ label, tooltip, className, isSorted }) => (
|
305 |
+
<Tooltip
|
306 |
+
title={label}
|
307 |
+
arrow
|
308 |
+
placement="top"
|
309 |
+
enterDelay={1000}
|
310 |
+
componentsProps={getTooltipStyle}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
>
|
312 |
+
<Typography
|
313 |
+
className={className}
|
314 |
+
sx={{
|
315 |
+
fontWeight: 600,
|
316 |
+
color: isSorted ? "primary.main" : "grey.700",
|
317 |
+
flex: 1,
|
318 |
+
transition: "max-width 0.2s ease",
|
319 |
+
maxWidth: "100%",
|
320 |
+
...(label === "Rank" || label === "Type"
|
321 |
+
? {
|
322 |
+
overflow: "visible",
|
323 |
+
whiteSpace: "normal",
|
324 |
+
textOverflow: "clip",
|
325 |
+
textAlign: "center",
|
326 |
+
}
|
327 |
+
: {
|
328 |
+
overflow: "hidden",
|
329 |
+
textOverflow: "ellipsis",
|
330 |
+
whiteSpace: "nowrap",
|
331 |
+
}),
|
332 |
+
"@media (hover: hover)": {
|
333 |
+
".MuiTableCell-root:hover &": {
|
334 |
+
maxWidth: tooltip ? "calc(100% - 48px)" : "100%",
|
335 |
+
},
|
336 |
+
},
|
337 |
+
}}
|
338 |
+
>
|
339 |
+
{label}
|
340 |
+
</Typography>
|
341 |
+
</Tooltip>
|
342 |
);
|
343 |
|
344 |
const InfoIcon = ({ tooltip }) => (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
<Box
|
346 |
+
component="span"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
sx={{
|
348 |
+
opacity: 0.5,
|
349 |
+
display: "flex",
|
350 |
+
alignItems: "center",
|
351 |
+
ml: 0.5,
|
|
|
352 |
}}
|
353 |
+
>
|
354 |
+
<InfoIconWithTooltip tooltip={tooltip} />
|
|
|
355 |
</Box>
|
356 |
+
);
|
357 |
|
358 |
+
const metricsMap = {
|
359 |
+
"evaluations.bc5cdr_chemical.normalized_score": ["Exact F1 entity"],
|
360 |
+
"evaluations.ncbi_disease.normalized_score": ["Exact F1 entity"],
|
361 |
+
"evaluations.chemprot.normalized_score": ["Macro F1", "Weighted F1"],
|
362 |
+
"evaluations.ddi2013.normalized_score": ["Macro F1", "Weighted F1"],
|
363 |
+
"evaluations.hoc.normalized_score": ["Macro F1", "Weighted F1"],
|
364 |
+
"evaluations.litcovid.normalized_score": ["Macro F1", "Weighted F1"],
|
365 |
+
"evaluations.pubmedqa.normalized_score": ["Accuracy", "Macro-F1"],
|
366 |
+
"evaluations.medqa.normalized_score": ["Accuracy", "Macro-F1"],
|
367 |
+
"evaluations.pubmed.normalized_score": [
|
368 |
+
// "bart",
|
369 |
+
"bert",
|
370 |
+
"rouge1",
|
371 |
+
"rougeL",
|
372 |
+
"rough2",
|
373 |
+
],
|
374 |
+
"evaluations.ms2.normalized_score": [
|
375 |
+
// "bart",
|
376 |
+
"bert",
|
377 |
+
"rouge1",
|
378 |
+
"rougeL",
|
379 |
+
"rough2",
|
380 |
+
],
|
381 |
+
"evaluations.cochrane_pls.normalized_score": [
|
382 |
+
// "bart",
|
383 |
+
"bert",
|
384 |
+
"dcr",
|
385 |
+
"fkg",
|
386 |
+
"rouge1",
|
387 |
+
"rougeL",
|
388 |
+
"rough2",
|
389 |
+
],
|
390 |
+
"evaluations.plos.normalized_score": [
|
391 |
+
// "bart",
|
392 |
+
"bert",
|
393 |
+
"dcr",
|
394 |
+
"fkg",
|
395 |
+
"rouge1",
|
396 |
+
"rougeL",
|
397 |
+
"rough2",
|
398 |
+
],
|
399 |
+
};
|
400 |
+
|
401 |
+
const createHeaderCell = (label, tooltip, accessorKey) => (header) => {
|
402 |
+
const [anchorEl, setAnchorEl] = useState(null);
|
403 |
+
const selected = useSubscoreStore(
|
404 |
+
(s) =>
|
405 |
+
s.selections[accessorKey] ||
|
406 |
+
(metricsMap[accessorKey] && metricsMap[accessorKey][0])
|
407 |
+
);
|
408 |
+
const setSelected = useSubscoreStore((s) => s.setSelection);
|
409 |
+
|
410 |
+
const handleClick = (event) => {
|
411 |
+
event.stopPropagation();
|
412 |
+
setAnchorEl(event.currentTarget);
|
413 |
+
};
|
414 |
+
|
415 |
+
const handleClose = (value) => {
|
416 |
+
if (value) setSelected(accessorKey, value);
|
417 |
+
setAnchorEl(null);
|
418 |
+
};
|
419 |
return (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
<Box
|
421 |
+
className="header-content"
|
|
|
|
|
|
|
|
|
|
|
|
|
422 |
sx={{
|
423 |
+
display: "flex",
|
424 |
+
alignItems: "center",
|
425 |
+
width: "100%",
|
426 |
+
overflow: "hidden",
|
|
|
427 |
}}
|
428 |
+
>
|
429 |
+
<HeaderLabel
|
430 |
+
label={label}
|
431 |
+
tooltip={tooltip}
|
432 |
+
className="header-label"
|
433 |
+
isSorted={header?.column?.getIsSorted()}
|
434 |
+
sx={{
|
435 |
+
flexGrow: 1,
|
436 |
+
flexShrink: 0,
|
437 |
+
overflow: "hidden",
|
438 |
+
whiteSpace: "nowrap",
|
439 |
+
textOverflow: "ellipsis",
|
440 |
+
}}
|
441 |
+
/>
|
442 |
+
<Box
|
443 |
+
sx={{
|
444 |
+
display: "flex",
|
445 |
+
alignItems: "center",
|
446 |
+
gap: 0.5,
|
447 |
+
ml: "auto",
|
448 |
+
flexShrink: 0,
|
449 |
+
maxWidth: "50%",
|
450 |
+
}}
|
451 |
+
>
|
452 |
+
{accessorKey in metricsMap && (
|
453 |
+
<>
|
454 |
+
<Chip
|
455 |
+
label={selected}
|
456 |
+
size="small"
|
457 |
+
onClick={handleClick}
|
458 |
+
sx={{
|
459 |
+
cursor: "pointer",
|
460 |
+
maxWidth: "100%",
|
461 |
+
minWidth: 0,
|
462 |
+
overflow: "hidden",
|
463 |
+
textOverflow: "ellipsis",
|
464 |
+
whiteSpace: "nowrap",
|
465 |
+
flexShrink: 1,
|
466 |
+
}}
|
467 |
+
/>
|
468 |
+
<Menu
|
469 |
+
anchorEl={anchorEl}
|
470 |
+
open={Boolean(anchorEl)}
|
471 |
+
onClose={() => handleClose(null)}
|
472 |
+
>
|
473 |
+
{metricsMap[accessorKey].map((item) => (
|
474 |
+
<MenuItem
|
475 |
+
key={item}
|
476 |
+
onClick={() => handleClose(item)}
|
477 |
+
sx={{
|
478 |
+
fontWeight:
|
479 |
+
selected === item
|
480 |
+
? "bold"
|
481 |
+
: "normal",
|
482 |
+
}}
|
483 |
+
>
|
484 |
+
{item}
|
485 |
+
</MenuItem>
|
486 |
+
))}
|
487 |
+
</Menu>
|
488 |
+
</>
|
489 |
+
)}
|
490 |
+
{tooltip && <InfoIcon tooltip={tooltip} />}
|
491 |
+
</Box>
|
492 |
</Box>
|
|
|
493 |
);
|
494 |
+
};
|
495 |
+
|
496 |
+
const createModelHeader =
|
497 |
+
(
|
498 |
+
totalModels,
|
499 |
+
officialProvidersCount = 0,
|
500 |
+
isOfficialProviderActive = false
|
501 |
+
) =>
|
502 |
+
({ table }) => {
|
503 |
+
return (
|
504 |
+
<Box
|
505 |
+
sx={{
|
506 |
+
display: "flex",
|
507 |
+
alignItems: "center",
|
508 |
+
justifyContent: "space-between",
|
509 |
+
width: "100%",
|
510 |
+
}}
|
511 |
+
>
|
512 |
+
<Box
|
513 |
+
sx={{
|
514 |
+
display: "flex",
|
515 |
+
alignItems: "center",
|
516 |
+
gap: 1,
|
517 |
+
}}
|
518 |
+
>
|
519 |
+
<Typography
|
520 |
+
sx={{
|
521 |
+
fontWeight: 600,
|
522 |
+
color: "grey.700",
|
523 |
+
overflow: "hidden",
|
524 |
+
textOverflow: "ellipsis",
|
525 |
+
whiteSpace: "nowrap",
|
526 |
+
}}
|
527 |
+
>
|
528 |
+
Model
|
529 |
+
</Typography>
|
530 |
+
</Box>
|
531 |
+
</Box>
|
532 |
+
);
|
533 |
+
};
|
534 |
|
535 |
const BooleanValue = ({ value }) => {
|
536 |
+
if (value === null || value === undefined)
|
537 |
+
return <Typography variant="body2">-</Typography>;
|
538 |
|
539 |
+
return (
|
540 |
+
<Box
|
541 |
+
sx={(theme) => ({
|
542 |
+
display: "flex",
|
543 |
+
alignItems: "center",
|
544 |
+
justifyContent: "center",
|
545 |
+
borderRadius: "4px",
|
546 |
+
px: 1,
|
547 |
+
py: 0.5,
|
548 |
+
backgroundColor: value
|
549 |
+
? theme.palette.mode === "dark"
|
550 |
+
? alpha(theme.palette.success.main, 0.1)
|
551 |
+
: alpha(theme.palette.success.main, 0.1)
|
552 |
+
: theme.palette.mode === "dark"
|
553 |
+
? alpha(theme.palette.error.main, 0.1)
|
554 |
+
: alpha(theme.palette.error.main, 0.1),
|
555 |
+
})}
|
556 |
+
>
|
557 |
+
<Typography
|
558 |
+
variant="body2"
|
559 |
+
sx={(theme) => ({
|
560 |
+
color: value
|
561 |
+
? theme.palette.mode === "dark"
|
562 |
+
? theme.palette.success.light
|
563 |
+
: theme.palette.success.dark
|
564 |
+
: theme.palette.mode === "dark"
|
565 |
+
? theme.palette.error.light
|
566 |
+
: theme.palette.error.dark,
|
567 |
+
})}
|
568 |
+
>
|
569 |
+
{value ? "Yes" : "No"}
|
570 |
+
</Typography>
|
571 |
+
</Box>
|
572 |
+
);
|
573 |
};
|
574 |
|
575 |
export const createColumns = (
|
576 |
+
getColorForValue,
|
577 |
+
scoreDisplay = "normalized",
|
578 |
+
columnVisibility = {},
|
579 |
+
totalModels,
|
580 |
+
averageMode = "all",
|
581 |
+
searchValue = "",
|
582 |
+
rankingMode = "static",
|
583 |
+
onTogglePin,
|
584 |
+
hasPinnedRows = false
|
585 |
) => {
|
586 |
// Ajuster les tailles des colonnes en fonction de la présence de lignes épinglées
|
587 |
const getColumnSize = (defaultSize) =>
|
|
|
782 |
{
|
783 |
accessorKey: "model.average_score",
|
784 |
header: createHeaderCell("Average", COLUMN_TOOLTIPS.AVERAGE),
|
785 |
+
cell: ({ row, getValue }) => (
|
786 |
+
<ScoreCell
|
787 |
+
getValue={getValue}
|
788 |
+
row={row}
|
789 |
+
field="model.average_score"
|
790 |
+
/>
|
791 |
+
),
|
792 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES["model.average_score"],
|
793 |
meta: {
|
794 |
headerStyle: {
|
|
|
821 |
},
|
822 |
},
|
823 |
];
|
824 |
+
|
825 |
+
const ScoreCell = ({ getValue, row, field }) => {
|
826 |
const rawValue = field.includes("normalized")
|
827 |
? row.original.evaluations[field.split(".")[1]]?.value
|
828 |
+
: getValue()[field];
|
829 |
+
|
830 |
+
const selected = useSubscoreStore(
|
831 |
+
(s) =>
|
832 |
+
s.selections[field] ||
|
833 |
+
(metricsMap[field] && metricsMap[field][0])
|
834 |
+
);
|
835 |
|
836 |
const isAverageColumn = field === "model.average_score";
|
837 |
+
const value = isAverageColumn ? getValue() : getValue()[selected];
|
838 |
+
if (isAverageColumn) {
|
839 |
+
console.log(getValue.toString(), row, getValue());
|
840 |
+
}
|
841 |
const hasNoValue = value === null || value === undefined;
|
842 |
|
843 |
return (
|
|
|
885 |
"-"
|
886 |
) : (
|
887 |
<>
|
888 |
+
{isAverageColumn ? (
|
889 |
<>
|
890 |
{value.toFixed(2)}
|
891 |
<span style={{ opacity: 0.5 }}> %</span>
|
|
|
911 |
accessorKey: "evaluations.bc5cdr_chemical.normalized_score",
|
912 |
header: createHeaderCell(
|
913 |
"BC5CDR-chemical",
|
914 |
+
COLUMN_TOOLTIPS.BC5CDR_CHEMICAL,
|
915 |
+
"evaluations.bc5cdr_chemical.normalized_score"
|
916 |
+
),
|
917 |
+
cell: ({ row, getValue }) => (
|
918 |
+
<ScoreCell
|
919 |
+
getValue={getValue}
|
920 |
+
row={row}
|
921 |
+
field="evaluations.bc5cdr_chemical.normalized_score"
|
922 |
+
/>
|
923 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
924 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
925 |
"evaluations.bc5cdr_chemical.normalized_score"
|
926 |
],
|
|
|
929 |
accessorKey: "evaluations.ncbi_disease.normalized_score",
|
930 |
header: createHeaderCell(
|
931 |
"NCBI Disease",
|
932 |
+
COLUMN_TOOLTIPS.NCBI_DISEASE,
|
933 |
+
"evaluations.ncbi_disease.normalized_score"
|
934 |
+
),
|
935 |
+
cell: ({ row, getValue }) => (
|
936 |
+
<ScoreCell
|
937 |
+
getValue={getValue}
|
938 |
+
row={row}
|
939 |
+
field="evaluations.ncbi_disease.normalized_score"
|
940 |
+
/>
|
941 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
942 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
943 |
"evaluations.ncbi_disease.normalized_score"
|
944 |
],
|
945 |
},
|
946 |
{
|
947 |
accessorKey: "evaluations.chemprot.normalized_score",
|
948 |
+
header: createHeaderCell(
|
949 |
+
"ChemProt",
|
950 |
+
COLUMN_TOOLTIPS.CHEMPROT,
|
951 |
+
"evaluations.chemprot.normalized_score"
|
952 |
+
),
|
953 |
+
cell: ({ row, getValue }) => (
|
954 |
+
<ScoreCell
|
955 |
+
getValue={getValue}
|
956 |
+
row={row}
|
957 |
+
field="evaluations.chemprot.normalized_score"
|
958 |
+
/>
|
959 |
+
),
|
960 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
961 |
"evaluations.chemprot.normalized_score"
|
962 |
],
|
963 |
},
|
964 |
{
|
965 |
accessorKey: "evaluations.ddi2013.normalized_score",
|
966 |
+
header: createHeaderCell(
|
967 |
+
"DDI2013",
|
968 |
+
COLUMN_TOOLTIPS.DDI2013,
|
969 |
+
"evaluations.ddi2013.normalized_score"
|
970 |
+
),
|
971 |
+
cell: ({ row, getValue }) => (
|
972 |
+
<ScoreCell
|
973 |
+
getValue={getValue}
|
974 |
+
row={row}
|
975 |
+
field="evaluations.ddi2013.normalized_score"
|
976 |
+
/>
|
977 |
+
),
|
978 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
979 |
"evaluations.ddi2013.normalized_score"
|
980 |
],
|
981 |
},
|
982 |
{
|
983 |
accessorKey: "evaluations.hoc.normalized_score",
|
984 |
+
header: createHeaderCell(
|
985 |
+
"HoC",
|
986 |
+
COLUMN_TOOLTIPS.HOC,
|
987 |
+
"evaluations.hoc.normalized_score"
|
988 |
+
),
|
989 |
+
cell: ({ row, getValue }) => (
|
990 |
+
<ScoreCell
|
991 |
+
getValue={getValue}
|
992 |
+
row={row}
|
993 |
+
field="evaluations.hoc.normalized_score"
|
994 |
+
/>
|
995 |
+
),
|
996 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
997 |
"evaluations.hoc.normalized_score"
|
998 |
],
|
999 |
},
|
1000 |
{
|
1001 |
accessorKey: "evaluations.litcovid.normalized_score",
|
1002 |
+
header: createHeaderCell(
|
1003 |
+
"LitCovid",
|
1004 |
+
COLUMN_TOOLTIPS.LITCOVID,
|
1005 |
+
"evaluations.litcovid.normalized_score"
|
1006 |
+
),
|
1007 |
+
cell: ({ row, getValue }) => (
|
1008 |
+
<ScoreCell
|
1009 |
+
getValue={getValue}
|
1010 |
+
row={row}
|
1011 |
+
field="evaluations.litcovid.normalized_score"
|
1012 |
+
/>
|
1013 |
+
),
|
1014 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
1015 |
"evaluations.litcovid.normalized_score"
|
1016 |
],
|
1017 |
},
|
1018 |
{
|
1019 |
accessorKey: "evaluations.medqa.normalized_score",
|
1020 |
+
header: createHeaderCell(
|
1021 |
+
"MedQA (5-Option)",
|
1022 |
+
COLUMN_TOOLTIPS.MEDQA,
|
1023 |
+
"evaluations.medqa.normalized_score"
|
1024 |
+
),
|
1025 |
+
cell: ({ row, getValue }) => (
|
1026 |
+
<ScoreCell
|
1027 |
+
getValue={getValue}
|
1028 |
+
row={row}
|
1029 |
+
field="evaluations.medqa.normalized_score"
|
1030 |
+
/>
|
1031 |
+
),
|
1032 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
1033 |
"evaluations.medqa.normalized_score"
|
1034 |
],
|
1035 |
},
|
1036 |
{
|
1037 |
accessorKey: "evaluations.pubmedqa.normalized_score",
|
1038 |
+
header: createHeaderCell(
|
1039 |
+
"PubMedQA",
|
1040 |
+
COLUMN_TOOLTIPS.PUBMEDQA,
|
1041 |
+
"evaluations.pubmedqa.normalized_score"
|
1042 |
+
),
|
1043 |
+
cell: ({ row, getValue }) => (
|
1044 |
+
<ScoreCell
|
1045 |
+
getValue={getValue}
|
1046 |
+
row={row}
|
1047 |
+
field="evaluations.pubmedqa.normalized_score"
|
1048 |
+
/>
|
1049 |
+
),
|
1050 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
1051 |
"evaluations.pubmedqa.normalized_score"
|
1052 |
],
|
1053 |
},
|
1054 |
{
|
1055 |
accessorKey: "evaluations.pubmed.normalized_score",
|
1056 |
+
header: createHeaderCell(
|
1057 |
+
"PubMed",
|
1058 |
+
COLUMN_TOOLTIPS.PUBMED,
|
1059 |
+
"evaluations.pubmed.normalized_score"
|
1060 |
+
),
|
1061 |
+
cell: ({ row, getValue }) => (
|
1062 |
+
<ScoreCell
|
1063 |
+
getValue={getValue}
|
1064 |
+
row={row}
|
1065 |
+
field="evaluations.pubmed.normalized_score"
|
1066 |
+
/>
|
1067 |
+
),
|
1068 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
1069 |
"evaluations.pubmed.normalized_score"
|
1070 |
],
|
1071 |
},
|
1072 |
{
|
1073 |
accessorKey: "evaluations.ms2.normalized_score",
|
1074 |
+
header: createHeaderCell(
|
1075 |
+
"MS^2",
|
1076 |
+
COLUMN_TOOLTIPS.MS2,
|
1077 |
+
"evaluations.ms2.normalized_score"
|
1078 |
+
),
|
1079 |
+
cell: ({ row, getValue }) => (
|
1080 |
+
<ScoreCell
|
1081 |
+
getValue={getValue}
|
1082 |
+
row={row}
|
1083 |
+
field="evaluations.ms2.normalized_score"
|
1084 |
+
/>
|
1085 |
+
),
|
1086 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
1087 |
"evaluations.ms2.normalized_score"
|
1088 |
],
|
|
|
1091 |
accessorKey: "evaluations.cochrane_pls.normalized_score",
|
1092 |
header: createHeaderCell(
|
1093 |
"Cochrane PLS",
|
1094 |
+
COLUMN_TOOLTIPS.COCHRANE_PLS,
|
1095 |
+
"evaluations.cochrane_pls.normalized_score"
|
1096 |
+
),
|
1097 |
+
cell: ({ row, getValue }) => (
|
1098 |
+
<ScoreCell
|
1099 |
+
getValue={getValue}
|
1100 |
+
row={row}
|
1101 |
+
field="evaluations.cochrane_pls.normalized_score"
|
1102 |
+
/>
|
1103 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
1104 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
1105 |
"evaluations.cochrane_pls.normalized_score"
|
1106 |
],
|
1107 |
},
|
1108 |
{
|
1109 |
accessorKey: "evaluations.plos.normalized_score",
|
1110 |
+
header: createHeaderCell(
|
1111 |
+
"PLOS",
|
1112 |
+
COLUMN_TOOLTIPS.PLOS,
|
1113 |
+
"evaluations.plos.normalized_score"
|
1114 |
+
),
|
1115 |
+
cell: ({ row, getValue }) => (
|
1116 |
+
<ScoreCell
|
1117 |
+
getValue={getValue}
|
1118 |
+
row={row}
|
1119 |
+
field="evaluations.plos.normalized_score"
|
1120 |
+
/>
|
1121 |
+
),
|
1122 |
size: TABLE_DEFAULTS.COLUMNS.COLUMN_SIZES[
|
1123 |
"evaluations.plos.normalized_score"
|
1124 |
],
|