File size: 11,450 Bytes
e7abd9e
 
 
 
 
 
20f4cd4
e7abd9e
 
 
 
ca11711
e7abd9e
 
 
ca11711
e7abd9e
 
 
 
ca11711
 
 
 
 
 
e7abd9e
20f4cd4
ca11711
e7abd9e
ca11711
e7abd9e
ca11711
 
e7abd9e
 
ca11711
e7abd9e
 
 
ca11711
e7abd9e
ca11711
e7abd9e
 
 
 
 
 
 
 
ca11711
e7abd9e
 
 
 
ca11711
e7abd9e
 
 
ca11711
e7abd9e
 
 
 
ca11711
e7abd9e
 
 
ca11711
e7abd9e
 
ca11711
 
 
 
 
e7abd9e
ca11711
e7abd9e
 
 
ca11711
 
 
 
 
 
e7abd9e
 
 
 
ca11711
e7abd9e
 
 
 
ca11711
e7abd9e
 
 
 
 
 
ca11711
e7abd9e
 
 
 
ca11711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7abd9e
 
 
 
 
ca11711
 
 
 
f1e551a
 
e7abd9e
7fd340f
 
ca11711
 
7fd340f
 
ca11711
 
 
7fd340f
 
 
ca11711
 
7fd340f
 
 
ca11711
 
7fd340f
 
 
ca11711
 
7fd340f
 
 
ca11711
 
7fd340f
 
 
ca11711
 
7fd340f
 
 
ca11711
 
e7abd9e
7fd340f
 
ca11711
 
47339f1
7fd340f
 
ca11711
 
11aad4a
7fd340f
 
ca11711
 
397a7d3
7fd340f
 
ca11711
 
397a7d3
e7abd9e
 
 
893ecc7
1de2d20
 
e7abd9e
ca11711
e7abd9e
 
 
 
 
 
 
 
 
 
ca11711
e7abd9e
 
 
 
 
ca11711
e7abd9e
 
 
ca11711
 
e7abd9e
 
 
 
 
 
 
 
 
ca11711
e7abd9e
f1e551a
e7abd9e
ca11711
e7abd9e
ca11711
 
 
 
 
 
e7abd9e
f1e551a
e7abd9e
 
 
 
 
 
 
ca11711
 
e7abd9e
 
 
ca11711
e7abd9e
ca11711
 
 
 
e7abd9e
ca11711
e7abd9e
ca11711
 
 
 
 
3adbd07
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
from app.core.cache import cache_config
from datetime import datetime
from typing import List, Dict, Any
import datasets
from fastapi import HTTPException
import logging
from app.config.hf_config import HF_TOKEN, HF_ORGANIZATION, HF_AGGREGATED
from app.utils.logging import LogFormatter

logger = logging.getLogger(__name__)


class LeaderboardService:
    def __init__(self):
        pass

    async def fetch_raw_data(self) -> List[Dict[str, Any]]:
        """Fetch raw leaderboard data from HuggingFace dataset"""
        try:
            logger.info(LogFormatter.section("FETCHING LEADERBOARD DATA"))
            logger.info(
                LogFormatter.info(
                    f"Loading dataset from {HF_ORGANIZATION}/{HF_AGGREGATED}"
                )
            )

            dataset = datasets.load_dataset(
                f"{HF_ORGANIZATION}/{HF_AGGREGATED}",
                cache_dir=cache_config.get_cache_path("datasets"),
            )["train"]

            df = dataset.to_pandas()
            data = df.to_dict("records")

            stats = {
                "Total_Entries": len(data),
                "Dataset_Size": f"{df.memory_usage(deep=True).sum() / 1024 / 1024:.1f}MB",
            }
            for line in LogFormatter.stats(stats, "Dataset Statistics"):
                logger.info(line)

            return data

        except Exception as e:
            logger.error(LogFormatter.error("Failed to fetch leaderboard data", e))
            raise HTTPException(status_code=500, detail=str(e))

    async def get_formatted_data(self) -> List[Dict[str, Any]]:
        """Get formatted leaderboard data"""
        try:
            logger.info(LogFormatter.section("FORMATTING LEADERBOARD DATA"))

            raw_data = await self.fetch_raw_data()
            formatted_data = []
            type_counts = {}
            error_count = 0

            # Initialize progress tracking
            total_items = len(raw_data)
            logger.info(LogFormatter.info(f"Processing {total_items:,} entries..."))

            for i, item in enumerate(raw_data, 1):
                try:
                    formatted_item = await self.transform_data(item)
                    formatted_data.append(formatted_item)

                    # Count model types
                    model_type = formatted_item["model"]["type"]
                    type_counts[model_type] = type_counts.get(model_type, 0) + 1

                except Exception as e:
                    error_count += 1
                    logger.error(
                        LogFormatter.error(
                            f"Failed to format entry {i}/{total_items}", e
                        )
                    )
                    continue

                # Log progress every 10%
                if i % max(1, total_items // 10) == 0:
                    progress = (i / total_items) * 100
                    logger.info(
                        LogFormatter.info(
                            f"Progress: {LogFormatter.progress_bar(i, total_items)}"
                        )
                    )

            # Log final statistics
            stats = {
                "Total_Processed": total_items,
                "Successful": len(formatted_data),
                "Failed": error_count,
            }
            logger.info(LogFormatter.section("PROCESSING SUMMARY"))
            for line in LogFormatter.stats(stats, "Processing Statistics"):
                logger.info(line)

            # Log model type distribution
            type_stats = {f"Type_{k}": v for k, v in type_counts.items()}
            logger.info(LogFormatter.subsection("MODEL TYPE DISTRIBUTION"))
            for line in LogFormatter.stats(type_stats):
                logger.info(line)
            return formatted_data

        except Exception as e:
            logger.error(LogFormatter.error("Failed to format leaderboard data", e))
            raise HTTPException(status_code=500, detail=str(e))

    def _calculate_average_score(self, data: Dict[str, Any]) -> float:
        scores = []
        print(data)
        for key in [
            "BC5CDR-chemical",
            "NCBI-disease",
            "ChemProt",
            "DDI2013",
            "HoC",
            "LitCovid",
            "MedQA",
            "PubMedQA",
            "PubMed",
            "MS^2",
            "Cochrane PLS",
            "PLOS",
        ]:
            normalized = data.get(key, {})
            if not isinstance(normalized, dict):
                continue

            for metric, value in normalized.items():
                if metric in ["bart", "dcr", "fkg"]:
                    continue
                if isinstance(value, (int, float)):
                    scores.append(value)
        return sum(scores) / len(scores) if scores else 0.0

    async def transform_data(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """Transform raw data into the format expected by the frontend"""
        try:
            # Extract model name for logging
            model_name = data.get("fullname", "Unknown")
            logger.debug(
                LogFormatter.info(f"Transforming data for model: {model_name}")
            )

            # Create unique ID combining model name, precision, sha and chat template status
            unique_id = f"{data.get('fullname', 'Unknown')}_{data.get('Precision', 'Unknown')}_{data.get('Model sha', 'Unknown')}_{str(data.get('Chat Template', False))}"
            evaluations = {
                "bc5cdr_chemical": {
                    "name": "BC5CDR-chemical",
                    "value": data.get("BC5CDR-chemical Raw", {}),
                    "normalized_score": data.get("BC5CDR-chemical", {}),
                },
                "ncbi_disease": {
                    "name": "NCBI-disease",
                    "value": data.get("NCBI-disease Raw", {}),
                    "normalized_score": data.get("NCBI-disease", {}),
                },
                "chemprot": {
                    "name": "ChemProt",
                    "value": data.get("ChemProt Raw", {}),
                    "normalized_score": data.get("ChemProt", {}),
                },
                "ddi2013": {
                    "name": "DDI2013",
                    "value": data.get("DDI2013 Raw", {}),
                    "normalized_score": data.get("DDI2013", {}),
                },
                "hoc": {
                    "name": "HoC",
                    "value": data.get("HoC Raw", {}),
                    "normalized_score": data.get("HoC", {}),
                },
                "litcovid": {
                    "name": "LitCovid",
                    "value": data.get("LitCovid Raw", {}),
                    "normalized_score": data.get("LitCovid", {}),
                },
                "medqa": {
                    "name": "MedQA (5-Option)",
                    "value": data.get("MedQA Raw", {}),
                    "normalized_score": data.get("MedQA", {}),
                },
                "pubmedqa": {
                    "name": "PubMedQA",
                    "value": data.get("PubMedQA Raw", {}),
                    "normalized_score": data.get("PubMedQA", {}),
                },
                "pubmed": {
                    "name": "PubMed",
                    "value": data.get("PubMed Raw", {}),
                    "normalized_score": data.get("PubMed", {}),
                },
                "ms2": {
                    "name": "MS^2",
                    "value": data.get("MS^2 Raw", {}),
                    "normalized_score": data.get("MS^2", {}),
                },
                "cochrane_pls": {
                    "name": "Cochrane PLS",
                    "value": data.get("Cochrane PLS Raw", {}),
                    "normalized_score": data.get("Cochrane PLS", {}),
                },
                "plos": {
                    "name": "PLOS",
                    "value": data.get("PLOS Raw", {}),
                    "normalized_score": data.get("PLOS", {}),
                },
            }

            features = {
                "is_not_available_on_hub": data.get("Available on the hub", False),
                "is_merged": data.get("Merged", False),
                "is_moe": data.get("MoE", False),
                "is_flagged": data.get("Flagged", False),
                "is_highlighted_by_maintainer": data.get("Official Providers", False),
            }

            metadata = {
                "upload_date": data.get("Upload To Hub Date"),
                "submission_date": data.get("Submission Date"),
                "generation": data.get("Generation"),
                "base_model": data.get("Base Model"),
                "hub_license": data.get("Hub License"),
                "hub_hearts": data.get("Hub ❤️"),
                "params_billions": data.get("#Params (B)"),
                "co2_cost": data.get("CO₂ cost (kg)", 0),
            }

            # Clean model type by removing emojis if present
            original_type = data.get("Type", "")
            model_type = original_type.lower().strip()

            # Remove emojis and parentheses
            if "(" in model_type:
                model_type = model_type.split("(")[0].strip()
            model_type = "".join(c for c in model_type if not c in "🔶🟢🟩💬🤝🌸 ")

            # Map old model types to new ones
            model_type_mapping = {
                "fine-tuned": "fined-tuned-on-domain-specific-dataset",
                "fine tuned": "fined-tuned-on-domain-specific-dataset",
                "finetuned": "fined-tuned-on-domain-specific-dataset",
                "fine_tuned": "fined-tuned-on-domain-specific-dataset",
                "ft": "fined-tuned-on-domain-specific-dataset",
                "finetuning": "fined-tuned-on-domain-specific-dataset",
                "fine tuning": "fined-tuned-on-domain-specific-dataset",
                "fine-tuning": "fined-tuned-on-domain-specific-dataset",
            }

            mapped_type = model_type_mapping.get(model_type.lower().strip(), model_type)

            if mapped_type != model_type:
                logger.debug(
                    LogFormatter.info(
                        f"Model type mapped: {original_type} -> {mapped_type}"
                    )
                )

            transformed_data = {
                "id": unique_id,
                "model": {
                    "name": data.get("fullname"),
                    "sha": data.get("Model sha"),
                    "precision": data.get("Precision"),
                    "type": mapped_type,
                    "weight_type": data.get("Weight type"),
                    "architecture": data.get("Architecture"),
                    "average_score": self._calculate_average_score(data),
                    "has_chat_template": data.get("Chat Template", False),
                },
                "evaluations": evaluations,
                "features": features,
                "metadata": metadata,
            }

            logger.debug(
                LogFormatter.success(f"Successfully transformed data for {model_name}")
            )
            return transformed_data

        except Exception as e:
            logger.error(
                LogFormatter.error(
                    f"Failed to transform data for {data.get('fullname', 'Unknown')}", e
                )
            )
            raise