import gradio as gr import numpy as np import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import cv2 import PIL.Image from scipy.interpolate import griddata import matplotlib.pyplot as plt from utils import azi_diff class AttentionBlock(nn.Module): def __init__(self, input_dim, num_heads, ff_dim, rate=0.2): super(AttentionBlock, self).__init__() self.attention = nn.MultiheadAttention(embed_dim=input_dim, num_heads=num_heads) self.dropout1 = nn.Dropout(rate) self.layer_norm1 = nn.LayerNorm(input_dim) self.ffn = nn.Sequential( nn.Linear(input_dim, ff_dim), nn.ReLU(), nn.Dropout(rate), nn.Linear(ff_dim, input_dim), nn.Dropout(rate) ) self.layer_norm2 = nn.LayerNorm(input_dim) def forward(self, x): attn_output, _ = self.attention(x, x, x) attn_output = self.dropout1(attn_output) out1 = self.layer_norm1(attn_output + x) ffn_output = self.ffn(out1) out2 = self.layer_norm2(ffn_output + out1) return out2 class TextureContrastClassifier(nn.Module): def __init__(self, input_shape, num_heads=4, key_dim=64, ff_dim=256, rate=0.1): super(TextureContrastClassifier, self).__init__() input_dim = input_shape[1] self.rich_attention_block = AttentionBlock(input_dim, num_heads, ff_dim, rate) self.rich_dense = nn.Sequential( nn.Linear(input_dim, 128), nn.ReLU(), nn.Dropout(0.5) ) self.poor_attention_block = AttentionBlock(input_dim, num_heads, ff_dim, rate) self.poor_dense = nn.Sequential( nn.Linear(input_dim, 128), nn.ReLU(), nn.Dropout(0.5) ) self.fc = nn.Sequential( nn.Linear(128 * input_shape[0], 256), nn.ReLU(), nn.Dropout(0.5), nn.Linear(256, 128), nn.ReLU(), nn.Dropout(0.5), nn.Linear(128, 64), nn.ReLU(), nn.Dropout(0.5), nn.Linear(64, 32), nn.ReLU(), nn.Dropout(0.5), nn.Linear(32, 16), nn.ReLU(), nn.Dropout(0.5), nn.Linear(16, 1), nn.Sigmoid() ) def forward(self, rich_texture, poor_texture): rich_texture = rich_texture.permute(1, 0, 2) poor_texture = poor_texture.permute(1, 0, 2) rich_attention = self.rich_attention_block(rich_texture) rich_attention = rich_attention.permute(1, 0, 2) rich_features = self.rich_dense(rich_attention) poor_attention = self.poor_attention_block(poor_texture) poor_attention = poor_attention.permute(1, 0, 2) poor_features = self.poor_dense(poor_attention) difference = rich_features - poor_features difference = difference.view(difference.size(0), -1) output = self.fc(difference) return output input_shape = (128, 256) model = TextureContrastClassifier(input_shape) model.load_state_dict(torch.load('./model_epoch_36.pth', map_location=torch.device('cpu'))) def inference(image, model): predictions = [] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() tmp = azi_diff(image, patch_num=128, N=256) rich = tmp["total_emb"][0] poor = tmp["total_emb"][1] rich_texture_tensor = torch.tensor(rich, dtype=torch.float32).unsqueeze(0).to(device) poor_texture_tensor = torch.tensor(poor, dtype=torch.float32).unsqueeze(0).to(device) with torch.no_grad(): output = model(rich_texture_tensor, poor_texture_tensor) prediction = output.cpu().numpy().flatten()[0] return prediction # Gradio Interface def predict(image): prediction = inference(image, model) return f"{prediction * 100:.2f}% chance AI-generated" gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="text").launch()