Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.optim as optim
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import cv2
|
8 |
+
import PIL.Image
|
9 |
+
from scipy.interpolate import griddata
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
+
def RGB2gray(rgb):
|
13 |
+
r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
|
14 |
+
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
|
15 |
+
return gray
|
16 |
+
|
17 |
+
# Update img_to_patches to handle direct image input
|
18 |
+
def img_to_patches(img: PIL.Image.Image) -> tuple:
|
19 |
+
patch_size = 16
|
20 |
+
img = img.convert('RGB') # Ensure image is in RGB format
|
21 |
+
|
22 |
+
grayscale_imgs = []
|
23 |
+
imgs = []
|
24 |
+
coordinates = []
|
25 |
+
|
26 |
+
for i in range(0, img.height, patch_size):
|
27 |
+
for j in range(0, img.width, patch_size):
|
28 |
+
box = (j, i, j + patch_size, i + patch_size)
|
29 |
+
img_color = np.asarray(img.crop(box))
|
30 |
+
grayscale_image = cv2.cvtColor(src=img_color, code=cv2.COLOR_RGB2GRAY)
|
31 |
+
grayscale_imgs.append(grayscale_image.astype(dtype=np.int32))
|
32 |
+
imgs.append(img_color)
|
33 |
+
normalized_coord = (i + patch_size // 2, j + patch_size // 2)
|
34 |
+
coordinates.append(normalized_coord)
|
35 |
+
|
36 |
+
return grayscale_imgs, imgs, coordinates, (img.height, img.width)
|
37 |
+
|
38 |
+
def get_l1(v):
|
39 |
+
return np.sum(np.abs(v[:, :-1] - v[:, 1:]))
|
40 |
+
|
41 |
+
def get_l2(v):
|
42 |
+
return np.sum(np.abs(v[:-1, :] - v[1:, :]))
|
43 |
+
|
44 |
+
def get_l3l4(v):
|
45 |
+
l3 = np.sum(np.abs(v[:-1, :-1] - v[1:, 1:]))
|
46 |
+
l4 = np.sum(np.abs(v[1:, :-1] - v[:-1, 1:]))
|
47 |
+
return l3 + l4
|
48 |
+
|
49 |
+
def get_pixel_var_degree_for_patch(patch: np.array) -> int:
|
50 |
+
l1 = get_l1(patch)
|
51 |
+
l2 = get_l2(patch)
|
52 |
+
l3l4 = get_l3l4(patch)
|
53 |
+
return l1 + l2 + l3l4
|
54 |
+
|
55 |
+
def get_rich_poor_patches(img: PIL.Image.Image, coloured=True):
|
56 |
+
gray_scale_patches, color_patches, coordinates, img_size = img_to_patches(img)
|
57 |
+
var_with_patch = []
|
58 |
+
for i, patch in enumerate(gray_scale_patches):
|
59 |
+
if coloured:
|
60 |
+
var_with_patch.append((get_pixel_var_degree_for_patch(patch), color_patches[i], coordinates[i]))
|
61 |
+
else:
|
62 |
+
var_with_patch.append((get_pixel_var_degree_for_patch(patch), patch, coordinates[i]))
|
63 |
+
|
64 |
+
var_with_patch.sort(reverse=True, key=lambda x: x[0])
|
65 |
+
mid_point = len(var_with_patch) // 2
|
66 |
+
r_patch = [(patch, coor) for var, patch, coor in var_with_patch[:mid_point]]
|
67 |
+
p_patch = [(patch, coor) for var, patch, coor in var_with_patch[mid_point:]]
|
68 |
+
p_patch.reverse()
|
69 |
+
return r_patch, p_patch, img_size
|
70 |
+
|
71 |
+
def azimuthalAverage(image, center=None):
|
72 |
+
y, x = np.indices(image.shape)
|
73 |
+
if not center:
|
74 |
+
center = np.array([(x.max() - x.min()) / 2.0, (y.max() - y.min()) / 2.0])
|
75 |
+
r = np.hypot(x - center[0], y - center[1])
|
76 |
+
ind = np.argsort(r.flat)
|
77 |
+
r_sorted = r.flat[ind]
|
78 |
+
i_sorted = image.flat[ind]
|
79 |
+
r_int = r_sorted.astype(int)
|
80 |
+
deltar = r_int[1:] - r_int[:-1]
|
81 |
+
rind = np.where(deltar)[0]
|
82 |
+
nr = rind[1:] - rind[:-1]
|
83 |
+
csim = np.cumsum(i_sorted, dtype=float)
|
84 |
+
tbin = csim[rind[1:]] - csim[rind[:-1]]
|
85 |
+
radial_prof = tbin / nr
|
86 |
+
return radial_prof
|
87 |
+
|
88 |
+
def azimuthal_integral(img, epsilon=1e-8, N=50):
|
89 |
+
if len(img.shape) == 3 and img.shape[2] == 3:
|
90 |
+
img = RGB2gray(img)
|
91 |
+
f = np.fft.fft2(img)
|
92 |
+
fshift = np.fft.fftshift(f)
|
93 |
+
fshift += epsilon
|
94 |
+
magnitude_spectrum = 20 * np.log(np.abs(fshift))
|
95 |
+
psd1D = azimuthalAverage(magnitude_spectrum)
|
96 |
+
points = np.linspace(0, N, num=psd1D.size)
|
97 |
+
xi = np.linspace(0, N, num=N)
|
98 |
+
interpolated = griddata(points, psd1D, xi, method='cubic')
|
99 |
+
interpolated = (interpolated - np.min(interpolated)) / (np.max(interpolated) - np.min(interpolated))
|
100 |
+
return interpolated.astype(np.float32)
|
101 |
+
|
102 |
+
def positional_emb(coor, im_size, N):
|
103 |
+
img_height, img_width = im_size
|
104 |
+
center_y, center_x = coor
|
105 |
+
normalized_y = center_y / img_height
|
106 |
+
normalized_x = center_x / img_width
|
107 |
+
pos_emb = np.zeros(N)
|
108 |
+
indices = np.arange(N)
|
109 |
+
div_term = 10000 ** (2 * (indices // 2) / N)
|
110 |
+
pos_emb[0::2] = np.sin(normalized_y / div_term[0::2]) + np.sin(normalized_x / div_term[0::2])
|
111 |
+
pos_emb[1::2] = np.cos(normalized_y / div_term[1::2]) + np.cos(normalized_x / div_term[1::2])
|
112 |
+
return pos_emb
|
113 |
+
|
114 |
+
def azi_diff(img: PIL.Image.Image, patch_num, N):
|
115 |
+
r, p, im_size = get_rich_poor_patches(img)
|
116 |
+
r_len = len(r)
|
117 |
+
p_len = len(p)
|
118 |
+
patch_emb_r = np.zeros((patch_num, N))
|
119 |
+
patch_emb_p = np.zeros((patch_num, N))
|
120 |
+
positional_emb_r = np.zeros((patch_num, N))
|
121 |
+
positional_emb_p = np.zeros((patch_num, N))
|
122 |
+
coor_r = []
|
123 |
+
coor_p = []
|
124 |
+
if r_len != 0:
|
125 |
+
for idx in range(patch_num):
|
126 |
+
tmp_patch1 = r[idx % r_len][0]
|
127 |
+
tmp_coor1 = r[idx % r_len][1]
|
128 |
+
patch_emb_r[idx] = azimuthal_integral(tmp_patch1, N=N)
|
129 |
+
positional_emb_r[idx] = positional_emb(tmp_coor1, im_size, N)
|
130 |
+
coor_r.append(tmp_coor1)
|
131 |
+
if p_len != 0:
|
132 |
+
for idx in range(patch_num):
|
133 |
+
tmp_patch2 = p[idx % p_len][0]
|
134 |
+
tmp_coor2 = p[idx % p_len][1]
|
135 |
+
patch_emb_p[idx] = azimuthal_integral(tmp_patch2, N=N)
|
136 |
+
positional_emb_p[idx] = positional_emb(tmp_coor2, im_size, N)
|
137 |
+
coor_p.append(tmp_coor2)
|
138 |
+
output = {"total_emb": [patch_emb_r + positional_emb_r / 5, patch_emb_p + positional_emb_p / 5],
|
139 |
+
"positional_emb": [positional_emb_r / 5, positional_emb_p / 5], "coor": [coor_r, coor_p],
|
140 |
+
"image_size": im_size}
|
141 |
+
return output
|
142 |
+
|
143 |
+
class AttentionBlock(nn.Module):
|
144 |
+
def __init__(self, input_dim, num_heads, ff_dim, rate=0.1):
|
145 |
+
super(AttentionBlock, self).__init__()
|
146 |
+
self.attention = nn.MultiheadAttention(embed_dim=input_dim, num_heads=num_heads)
|
147 |
+
self.dropout1 = nn.Dropout(rate)
|
148 |
+
self.layer_norm1 = nn.LayerNorm(input_dim)
|
149 |
+
self.ffn = nn.Sequential(
|
150 |
+
nn.Linear(input_dim, ff_dim),
|
151 |
+
nn.ReLU(),
|
152 |
+
nn.Dropout(rate),
|
153 |
+
nn.Linear(ff_dim, input_dim),
|
154 |
+
nn.Dropout(rate)
|
155 |
+
)
|
156 |
+
self.layer_norm2 = nn.LayerNorm(input_dim)
|
157 |
+
|
158 |
+
def forward(self, x):
|
159 |
+
attn_output, _ = self.attention(x, x, x)
|
160 |
+
attn_output = self.dropout1(attn_output)
|
161 |
+
out1 = self.layer_norm1(attn_output + x)
|
162 |
+
ffn_output = self.ffn(out1)
|
163 |
+
out2 = self.layer_norm2(ffn_output + out1)
|
164 |
+
return out2
|
165 |
+
|
166 |
+
class TextureContrastClassifier(nn.Module):
|
167 |
+
def __init__(self, input_shape, num_heads=4, key_dim=64, ff_dim=256, rate=0.1):
|
168 |
+
super(TextureContrastClassifier, self).__init__()
|
169 |
+
input_dim = input_shape[1]
|
170 |
+
self.rich_attention_block = AttentionBlock(input_dim, num_heads, ff_dim, rate)
|
171 |
+
self.rich_dense = nn.Sequential(
|
172 |
+
nn.Linear(input_dim, 128),
|
173 |
+
nn.ReLU(),
|
174 |
+
nn.Dropout(0.5)
|
175 |
+
)
|
176 |
+
self.poor_attention_block = AttentionBlock(input_dim, num_heads, ff_dim, rate)
|
177 |
+
self.poor_dense = nn.Sequential(
|
178 |
+
nn.Linear(input_dim, 128),
|
179 |
+
nn.ReLU(),
|
180 |
+
nn.Dropout(0.5)
|
181 |
+
)
|
182 |
+
self.fc = nn.Sequential(
|
183 |
+
nn.Linear(128 * input_shape[0], 256),
|
184 |
+
nn.ReLU(),
|
185 |
+
nn.Dropout(0.5),
|
186 |
+
nn.Linear(256, 128),
|
187 |
+
nn.ReLU(),
|
188 |
+
nn.Dropout(0.5),
|
189 |
+
nn.Linear(128, 64),
|
190 |
+
nn.ReLU(),
|
191 |
+
nn.Dropout(0.5),
|
192 |
+
nn.Linear(64, 32),
|
193 |
+
nn.ReLU(),
|
194 |
+
nn.Dropout(0.5),
|
195 |
+
nn.Linear(32, 16),
|
196 |
+
nn.ReLU(),
|
197 |
+
nn.Dropout(0.5),
|
198 |
+
nn.Linear(16, 1),
|
199 |
+
nn.Sigmoid()
|
200 |
+
)
|
201 |
+
|
202 |
+
def forward(self, rich_texture, poor_texture):
|
203 |
+
rich_texture = rich_texture.permute(1, 0, 2)
|
204 |
+
poor_texture = poor_texture.permute(1, 0, 2)
|
205 |
+
rich_attention = self.rich_attention_block(rich_texture)
|
206 |
+
rich_attention = rich_attention.permute(1, 0, 2)
|
207 |
+
rich_features = self.rich_dense(rich_attention)
|
208 |
+
poor_attention = self.poor_attention_block(poor_texture)
|
209 |
+
poor_attention = poor_attention.permute(1, 0, 2)
|
210 |
+
poor_features = self.poor_dense(poor_attention)
|
211 |
+
difference = rich_features - poor_features
|
212 |
+
difference = difference.view(difference.size(0), -1)
|
213 |
+
output = self.fc(difference)
|
214 |
+
return output
|
215 |
+
|
216 |
+
input_shape = (128, 256)
|
217 |
+
model = TextureContrastClassifier(input_shape)
|
218 |
+
model.load_state_dict(torch.load('C:/Users/Matt/Downloads/model_epoch_45.pth', map_location=torch.device('cpu')))
|
219 |
+
|
220 |
+
def inference(image, model):
|
221 |
+
predictions = []
|
222 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
223 |
+
model.to(device)
|
224 |
+
model.eval()
|
225 |
+
tmp = azi_diff(image, patch_num=128, N=256)
|
226 |
+
rich = tmp["total_emb"][0]
|
227 |
+
poor = tmp["total_emb"][1]
|
228 |
+
rich_texture_tensor = torch.tensor(rich, dtype=torch.float32).unsqueeze(0).to(device)
|
229 |
+
poor_texture_tensor = torch.tensor(poor, dtype=torch.float32).unsqueeze(0).to(device)
|
230 |
+
with torch.no_grad():
|
231 |
+
output = model(rich_texture_tensor, poor_texture_tensor)
|
232 |
+
prediction = output.cpu().numpy().flatten()[0]
|
233 |
+
return prediction
|
234 |
+
|
235 |
+
# Gradio Interface
|
236 |
+
def predict(image):
|
237 |
+
prediction = inference(image, model)
|
238 |
+
return f"{prediction * 100:.2f}% chance AI-generated"
|
239 |
+
|
240 |
+
gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="text").launch()
|