ymcmy commited on
Commit
d4029cb
·
verified ·
1 Parent(s): bad2df4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -154
app.py CHANGED
@@ -8,160 +8,7 @@ import cv2
8
  import PIL.Image
9
  from scipy.interpolate import griddata
10
  import matplotlib.pyplot as plt
11
-
12
- def RGB2gray(rgb):
13
- r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
14
- gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
15
- return gray
16
-
17
- # Update img_to_patches to handle direct image input
18
- def img_to_patches(img: PIL.Image.Image) -> tuple:
19
- patch_size = 16
20
- img = img.convert('RGB') # Ensure image is in RGB format
21
-
22
- grayscale_imgs = []
23
- imgs = []
24
- coordinates = []
25
-
26
- for i in range(0, img.height, patch_size):
27
- for j in range(0, img.width, patch_size):
28
- box = (j, i, j + patch_size, i + patch_size)
29
- img_color = np.asarray(img.crop(box))
30
- grayscale_image = cv2.cvtColor(src=img_color, code=cv2.COLOR_RGB2GRAY)
31
- grayscale_imgs.append(grayscale_image.astype(dtype=np.int32))
32
- imgs.append(img_color)
33
- normalized_coord = (i + patch_size // 2, j + patch_size // 2)
34
- coordinates.append(normalized_coord)
35
-
36
- return grayscale_imgs, imgs, coordinates, (img.height, img.width)
37
-
38
- def get_l1(v):
39
- return np.sum(np.abs(v[:, :-1] - v[:, 1:]))
40
-
41
- def get_l2(v):
42
- return np.sum(np.abs(v[:-1, :] - v[1:, :]))
43
-
44
- def get_l3l4(v):
45
- l3 = np.sum(np.abs(v[:-1, :-1] - v[1:, 1:]))
46
- l4 = np.sum(np.abs(v[1:, :-1] - v[:-1, 1:]))
47
- return l3 + l4
48
-
49
- def get_pixel_var_degree_for_patch(patch: np.array) -> int:
50
- l1 = get_l1(patch)
51
- l2 = get_l2(patch)
52
- l3l4 = get_l3l4(patch)
53
- return l1 + l2 + l3l4
54
-
55
- def get_rich_poor_patches(img: PIL.Image.Image, coloured=True):
56
- gray_scale_patches, color_patches, coordinates, img_size = img_to_patches(img)
57
- var_with_patch = []
58
- for i, patch in enumerate(gray_scale_patches):
59
- if coloured:
60
- var_with_patch.append((get_pixel_var_degree_for_patch(patch), color_patches[i], coordinates[i]))
61
- else:
62
- var_with_patch.append((get_pixel_var_degree_for_patch(patch), patch, coordinates[i]))
63
-
64
- var_with_patch.sort(reverse=True, key=lambda x: x[0])
65
- mid_point = len(var_with_patch) // 2
66
- r_patch = [(patch, coor) for var, patch, coor in var_with_patch[:mid_point]]
67
- p_patch = [(patch, coor) for var, patch, coor in var_with_patch[mid_point:]]
68
- p_patch.reverse()
69
- return r_patch, p_patch, img_size
70
-
71
- def azimuthalAverage(image, center=None):
72
- y, x = np.indices(image.shape)
73
- if not center:
74
- center = np.array([(x.max() - x.min()) / 2.0, (y.max() - y.min()) / 2.0])
75
- r = np.hypot(x - center[0], y - center[1])
76
- ind = np.argsort(r.flat)
77
- r_sorted = r.flat[ind]
78
- i_sorted = image.flat[ind]
79
- r_int = r_sorted.astype(int)
80
- deltar = r_int[1:] - r_int[:-1]
81
- rind = np.where(deltar)[0]
82
- nr = rind[1:] - rind[:-1]
83
- csim = np.cumsum(i_sorted, dtype=float)
84
- tbin = csim[rind[1:]] - csim[rind[:-1]]
85
- radial_prof = tbin / nr
86
- return radial_prof
87
-
88
- def azimuthal_integral(img, epsilon=1e-8, N=50):
89
- if len(img.shape) == 3 and img.shape[2] == 3:
90
- img = RGB2gray(img)
91
- f = np.fft.fft2(img)
92
- fshift = np.fft.fftshift(f)
93
- fshift += epsilon
94
- magnitude_spectrum = 20 * np.log(np.abs(fshift))
95
- psd1D = azimuthalAverage(magnitude_spectrum)
96
- points = np.linspace(0, N, num=psd1D.size)
97
- xi = np.linspace(0, N, num=N)
98
- interpolated = griddata(points, psd1D, xi, method='cubic')
99
- interpolated = (interpolated - np.min(interpolated)) / (np.max(interpolated) - np.min(interpolated))
100
- return interpolated.astype(np.float32)
101
-
102
- def positional_emb(coor, im_size, N):
103
- img_height, img_width = im_size
104
- center_y, center_x = coor
105
- normalized_y = center_y / img_height
106
- normalized_x = center_x / img_width
107
- pos_emb = np.zeros(N)
108
- indices = np.arange(N)
109
- div_term = 10000 ** (2 * (indices // 2) / N)
110
- pos_emb[0::2] = np.sin(normalized_y / div_term[0::2]) + np.sin(normalized_x / div_term[0::2])
111
- pos_emb[1::2] = np.cos(normalized_y / div_term[1::2]) + np.cos(normalized_x / div_term[1::2])
112
- return pos_emb
113
-
114
- def azi_diff(img: PIL.Image.Image, patch_num, N):
115
- r, p, im_size = get_rich_poor_patches(img)
116
- r_len = len(r)
117
- p_len = len(p)
118
- patch_emb_r = np.zeros((patch_num, N))
119
- patch_emb_p = np.zeros((patch_num, N))
120
- positional_emb_r = np.zeros((patch_num, N))
121
- positional_emb_p = np.zeros((patch_num, N))
122
- coor_r = []
123
- coor_p = []
124
- if r_len != 0:
125
- for idx in range(patch_num):
126
- tmp_patch1 = r[idx % r_len][0]
127
- tmp_coor1 = r[idx % r_len][1]
128
- patch_emb_r[idx] = azimuthal_integral(tmp_patch1, N=N)
129
- positional_emb_r[idx] = positional_emb(tmp_coor1, im_size, N)
130
- coor_r.append(tmp_coor1)
131
- if p_len != 0:
132
- for idx in range(patch_num):
133
- tmp_patch2 = p[idx % p_len][0]
134
- tmp_coor2 = p[idx % p_len][1]
135
- patch_emb_p[idx] = azimuthal_integral(tmp_patch2, N=N)
136
- positional_emb_p[idx] = positional_emb(tmp_coor2, im_size, N)
137
- coor_p.append(tmp_coor2)
138
- output = {"total_emb": [patch_emb_r + positional_emb_r / 5, patch_emb_p + positional_emb_p / 5],
139
- "positional_emb": [positional_emb_r / 5, positional_emb_p / 5], "coor": [coor_r, coor_p],
140
- "image_size": im_size}
141
- return output
142
-
143
- class AttentionBlock(nn.Module):
144
- def __init__(self, input_dim, num_heads, ff_dim, rate=0.1):
145
- super(AttentionBlock, self).__init__()
146
- self.attention = nn.MultiheadAttention(embed_dim=input_dim, num_heads=num_heads)
147
- self.dropout1 = nn.Dropout(rate)
148
- self.layer_norm1 = nn.LayerNorm(input_dim)
149
- self.ffn = nn.Sequential(
150
- nn.Linear(input_dim, ff_dim),
151
- nn.ReLU(),
152
- nn.Dropout(rate),
153
- nn.Linear(ff_dim, input_dim),
154
- nn.Dropout(rate)
155
- )
156
- self.layer_norm2 = nn.LayerNorm(input_dim)
157
-
158
- def forward(self, x):
159
- attn_output, _ = self.attention(x, x, x)
160
- attn_output = self.dropout1(attn_output)
161
- out1 = self.layer_norm1(attn_output + x)
162
- ffn_output = self.ffn(out1)
163
- out2 = self.layer_norm2(ffn_output + out1)
164
- return out2
165
 
166
  class TextureContrastClassifier(nn.Module):
167
  def __init__(self, input_shape, num_heads=4, key_dim=64, ff_dim=256, rate=0.1):
 
8
  import PIL.Image
9
  from scipy.interpolate import griddata
10
  import matplotlib.pyplot as plt
11
+ from utils import azi_diff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  class TextureContrastClassifier(nn.Module):
14
  def __init__(self, input_shape, num_heads=4, key_dim=64, ff_dim=256, rate=0.1):