ymcmy's picture
Create train.py
77e830c verified
# remember to run preprocess.py before training
# preprocess while training is not as effecient
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import MultiheadAttention
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader, random_split
import json
import time
import os
import h5py
import numpy as np
from tqdm import tqdm
class AttentionBlock(nn.Module):
def __init__(self, input_dim, num_heads, key_dim, ff_dim, rate=0.1):
super(AttentionBlock, self).__init__()
self.multihead_attn = MultiheadAttention(embed_dim=input_dim, num_heads=num_heads)
self.dropout1 = nn.Dropout(rate)
self.layer_norm1 = nn.LayerNorm(input_dim, eps=1e-6)
self.ffn = nn.Sequential(
nn.Linear(input_dim, ff_dim),
nn.ReLU(),
nn.Dropout(rate),
nn.Linear(ff_dim, input_dim),
nn.Dropout(rate)
)
self.layer_norm2 = nn.LayerNorm(input_dim, eps=1e-6)
def forward(self, x):
attn_output, _ = self.multihead_attn(x, x, x)
attn_output = self.dropout1(attn_output)
out1 = self.layer_norm1(x + attn_output)
ffn_output = self.ffn(out1)
out2 = self.layer_norm2(out1 + ffn_output)
return out2
class TextureContrastClassifier(nn.Module):
def __init__(self, input_shape, num_heads=4, key_dim=64, ff_dim=256, rate=0.5):
super(TextureContrastClassifier, self).__init__()
input_dim = input_shape[1] # assuming the input shape is (seq_len, feature_dim)
self.rich_texture_attention = AttentionBlock(input_dim, num_heads, key_dim, ff_dim, rate)
self.poor_texture_attention = AttentionBlock(input_dim, num_heads, key_dim, ff_dim, rate)
self.rich_texture_dense = nn.Sequential(
nn.Linear(input_dim, 128),
nn.ReLU(),
nn.Dropout(rate)
)
self.poor_texture_dense = nn.Sequential(
nn.Linear(input_dim, 128),
nn.ReLU(),
nn.Dropout(rate)
)
self.fc = nn.Sequential(
nn.Flatten(),
nn.Linear(input_shape[0] * 128, 256),
nn.ReLU(),
nn.Dropout(rate),
nn.Linear(256, 128),
nn.ReLU(),
nn.Dropout(rate),
nn.Linear(128, 64),
nn.ReLU(),
nn.Dropout(rate),
nn.Linear(64, 32),
nn.ReLU(),
nn.Dropout(rate),
nn.Linear(32, 16),
nn.ReLU(),
nn.Dropout(rate),
nn.Linear(16, 1),
nn.Sigmoid()
)
def forward(self, rich_texture, poor_texture):
rich_texture = self.rich_texture_attention(rich_texture)
rich_texture = self.rich_texture_dense(rich_texture)
poor_texture = self.poor_texture_attention(poor_texture)
poor_texture = self.poor_texture_dense(poor_texture)
difference = rich_texture - poor_texture
output = self.fc(difference)
return output
import os
import h5py
import numpy as np
from tqdm import tqdm
def load_and_split_data(h5_dir, train_ratio=0.8,max_num=40):
train_rich, train_poor, train_labels = [], [], []
test_rich, test_poor, test_labels = [], [], []
for file_name in tqdm(os.listdir(h5_dir)[:60]):
if file_name.endswith('.h5'):
file_path = os.path.join(h5_dir, file_name)
try:
with h5py.File(file_path, 'r') as h5f:
rich = h5f['rich'][:]
poor = h5f['poor'][:]
labels = h5f['labels'][:]
dataset_size = len(labels)
train_size = int(train_ratio * dataset_size)
indices = np.random.permutation(dataset_size)
train_indices = indices[:train_size]
test_indices = indices[train_size:]
train_rich.append(rich[train_indices])
train_poor.append(poor[train_indices])
train_labels.append(labels[train_indices])
test_rich.append(rich[test_indices])
test_poor.append(poor[test_indices])
test_labels.append(labels[test_indices])
except Exception as e:
print(f"Error processing {file_name}: {e}")
train_rich = np.concatenate(train_rich, axis=0)
train_poor = np.concatenate(train_poor, axis=0)
train_labels = np.concatenate(train_labels, axis=0)
test_rich = np.concatenate(test_rich, axis=0)
test_poor = np.concatenate(test_poor, axis=0)
test_labels = np.concatenate(test_labels, axis=0)
return train_rich, train_poor, train_labels, test_rich, test_poor, test_labels
class TextureDataset(Dataset):
def __init__(self, rich, poor, labels):
self.rich = rich
self.poor = poor
self.labels = labels
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
rich = torch.tensor(self.rich[idx], dtype=torch.float32)
poor = torch.tensor(self.poor[idx], dtype=torch.float32)
label = torch.tensor(self.labels[idx], dtype=torch.float32)
return rich, poor, label
def validate(model, test_loader, criterion, device):
model.eval()
val_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for rich, poor, labels in test_loader:
rich, poor, labels = rich.to(device), poor.to(device), labels.to(device)
outputs = model(rich, poor)
outputs = outputs.squeeze()
loss = criterion(outputs, labels)
val_loss += loss.item()
predicted = (outputs > 0.5).float()
total += labels.size(0)
correct += (predicted == labels).sum().item()
val_loss /= len(test_loader)
val_accuracy = correct / total
print(f'Validation Loss: {val_loss:.4f}, Validation Accuracy: {val_accuracy:.4f}')
return val_loss, val_accuracy
h5_dir = '/content/drive/MyDrive/h5saves'
train_rich, train_poor, train_labels, test_rich, test_poor, test_labels = load_and_split_data(h5_dir, train_ratio=0.8)
print(f"Training data: {len(train_labels)} samples")
print(f"Testing data: {len(test_labels)} samples")
train_dataset = TextureDataset(train_rich, train_poor, train_labels)
test_dataset = TextureDataset(test_rich, test_poor, test_labels)
batch_size = 2048
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
input_shape = (128, 256)
model = TextureContrastClassifier(input_shape)
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=0.0001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=5, verbose=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
history = {'train_loss': [], 'val_loss': [], 'train_accuracy':[], 'val_accuracy': []}
save_dir = '/content/drive/MyDrive/model_checkpoints'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
num_epochs = 100
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
correct = 0
total = 0
batch_loss = 0.0
for batch_idx, (rich, poor, labels) in enumerate(train_loader):
rich, poor, labels = rich.to(device), poor.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(rich, poor)
outputs = outputs.squeeze()
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
batch_loss += loss.item()
predicted = (outputs > 0.5).float()
total += labels.size(0)
correct += (predicted == labels).sum().item()
if (batch_idx + 1) % 5 == 0:
print(f'\rEpoch [{epoch+1}/{num_epochs}], Batch [{batch_idx+1}], Loss: {batch_loss / 5:.4f}, Accuracy: {correct / total:.2f}', end='')
batch_loss = 0.0
avg_train_loss = running_loss / len(train_loader)
train_accuracy = correct / total
val_loss, val_accuracy = validate(model, test_loader, criterion, device)
history['train_loss'].append(avg_train_loss)
history['val_loss'].append(val_loss)
history['val_accuracy'].append(val_accuracy)
history['train_accuracy'].append(train_accuracy)
scheduler.step(val_loss)
checkpoint_path = os.path.join(save_dir, f'model_epoch_{epoch+1}.pth')
torch.save(model.state_dict(), checkpoint_path)
print(f'\nModel checkpoint saved for epoch {epoch+1}')
print(f'Epoch [{epoch+1}/{num_epochs:.4f}], Training Loss: {avg_train_loss:.4f}, Training Accuracy: {train_accuracy:.4f} Validation Loss: {val_loss:.4f}, Validation Accuracy: {val_accuracy:.4f}')
history_path = os.path.join(save_dir, 'training_history.json')
with open(history_path, 'w') as f:
json.dump(history, f)
print('Finished Training')
print(f'Training history saved at {history_path}')