ymcmy's picture
Update preprocess.py
845a877 verified
raw
history blame
4.95 kB
# preprocess by converting images into fingerprints and save to disk
import numpy as np
import cv2
import PIL.Image
from scipy.interpolate import griddata
import h5py
from utils import azi_diff
from tqdm import tqdm
import os
import random
import pickle
import logging
import joblib
def get_image_files(directory):
image_extensions = {'.jpg', '.jpeg', '.png'}
image_files = []
for root, _, files in os.walk(directory):
for file in files:
if os.path.splitext(file)[1].lower() in image_extensions:
image_files.append(os.path.join(root, file))
return image_files
def load_image_files(class1_dirs, class2_dirs):
class1_files = []
for directory in tqdm(class1_dirs):
class1_files.extend(get_image_files(directory))
class2_files = []
for directory in tqdm(class2_dirs):
class2_files.extend(get_image_files(directory))
# Ensure equal representation
min_length = min(len(class1_files), len(class2_files))
random.shuffle(class1_files)
random.shuffle(class2_files)
class1_files = class1_files[:min_length]
class2_files = class2_files[:min_length]
print(f"Number of files: Real = {len(class1_files)}, Fake = {len(class2_files)}")
return class1_files, class2_files
def process_and_save_h5(file_label_pairs, patch_num, N, save_interval, joblib_batch_size, output_dir, start_by=0):
def process_file(file_label):
path, label = file_label
try:
result = azi_diff(path, patch_num, N)
return result, label
except Exception as e:
logging.error(f"Error processing file {path}: {str(e)}")
return None, None
num_files = len(file_label_pairs)
num_saves = (num_files - start_by + save_interval - 1) // save_interval
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with tqdm(total=num_files - start_by, desc="Processing files", unit="image") as pbar:
for save_index in range(num_saves):
save_start = start_by + save_index * save_interval
save_end = min(save_start + save_interval, num_files)
batch_pairs = file_label_pairs[save_start:save_end]
all_rich = []
all_poor = []
all_labels = []
for batch_start in range(0, len(batch_pairs), joblib_batch_size):
batch_end = min(batch_start + joblib_batch_size, len(batch_pairs))
small_batch_pairs = batch_pairs[batch_start:batch_end]
processed_data = joblib.Parallel(n_jobs=-1)(
joblib.delayed(process_file)(file_label) for file_label in small_batch_pairs
)
for data, label in processed_data:
if data is not None:
all_rich.append(data['total_emb'][0])
all_poor.append(data['total_emb'][1])
all_labels.append(label)
pbar.update(len(small_batch_pairs))
next_save_start = save_end
output_filename = f"{output_dir}/processed_data_{next_save_start}.h5"
logging.info(f"Saving {output_filename}")
with h5py.File(output_filename, 'w') as h5file:
h5file.create_dataset('rich', data=np.array(all_rich))
h5file.create_dataset('rich', data=np.array(all_poor))
h5file.create_dataset('labels', data=np.array(all_labels))
logging.info(f"Successfully saved {output_filename}")
del all_rich
del all_poor
del all_labels
load=False
class1_dirs = [
"/home/archive/real/",
"/home/13k_real/",
"/home/AI_detection_dataset/Real_AI_SD_LD_Dataset/train/real/",
"/home/AI_detection_dataset/Real_AI_SD_LD_Dataset/test/real/"
] #real 0
class2_dirs = [
"/home/archive/fakeV2/fake-v2/",
"/home/dalle3/",
"/home/AI_detection_dataset/Real_AI_SD_LD_Dataset/train/fake/",
"/home/AI_detection_dataset/Real_AI_SD_LD_Dataset/test/fake/"
] #fake 1
output_dir = "/content/drive/MyDrive/h5saves"
file_paths_pickle_save_dir='/content/drive/MyDrive/aigc_file_paths.pkl'
patch_num = 128
N = 256
save_interval = 2000
joblib_batch_size = 400
start_by = 0
if load==True:
with open(file_paths_pickle_save_dir, 'rb') as file:
file_label_pairs=pickle.load(file)
print(len(file_label_pairs))
else:
class1_files, class2_files = load_image_files(class1_dirs, class2_dirs)
file_label_pairs = list(zip(class1_files, [0] * len(class1_files))) + list(zip(class2_files, [1] * len(class2_files)))
random.shuffle(file_label_pairs)
with open(file_paths_pickle_save_dir, 'wb') as file:
pickle.dump(file_label_pairs, file)
print(len(file_label_pairs))
logging.basicConfig(level=logging.INFO)
process_and_save_h5(file_label_pairs, patch_num, N, save_interval, joblib_batch_size, output_dir, start_by)