ymcmy's picture
Update app.py
1e41eb8 verified
raw
history blame
9.12 kB
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import cv2
import PIL.Image
from scipy.interpolate import griddata
import matplotlib.pyplot as plt
def RGB2gray(rgb):
r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray
# Update img_to_patches to handle direct image input
def img_to_patches(img: PIL.Image.Image) -> tuple:
patch_size = 16
img = img.convert('RGB') # Ensure image is in RGB format
grayscale_imgs = []
imgs = []
coordinates = []
for i in range(0, img.height, patch_size):
for j in range(0, img.width, patch_size):
box = (j, i, j + patch_size, i + patch_size)
img_color = np.asarray(img.crop(box))
grayscale_image = cv2.cvtColor(src=img_color, code=cv2.COLOR_RGB2GRAY)
grayscale_imgs.append(grayscale_image.astype(dtype=np.int32))
imgs.append(img_color)
normalized_coord = (i + patch_size // 2, j + patch_size // 2)
coordinates.append(normalized_coord)
return grayscale_imgs, imgs, coordinates, (img.height, img.width)
def get_l1(v):
return np.sum(np.abs(v[:, :-1] - v[:, 1:]))
def get_l2(v):
return np.sum(np.abs(v[:-1, :] - v[1:, :]))
def get_l3l4(v):
l3 = np.sum(np.abs(v[:-1, :-1] - v[1:, 1:]))
l4 = np.sum(np.abs(v[1:, :-1] - v[:-1, 1:]))
return l3 + l4
def get_pixel_var_degree_for_patch(patch: np.array) -> int:
l1 = get_l1(patch)
l2 = get_l2(patch)
l3l4 = get_l3l4(patch)
return l1 + l2 + l3l4
def get_rich_poor_patches(img: PIL.Image.Image, coloured=True):
gray_scale_patches, color_patches, coordinates, img_size = img_to_patches(img)
var_with_patch = []
for i, patch in enumerate(gray_scale_patches):
if coloured:
var_with_patch.append((get_pixel_var_degree_for_patch(patch), color_patches[i], coordinates[i]))
else:
var_with_patch.append((get_pixel_var_degree_for_patch(patch), patch, coordinates[i]))
var_with_patch.sort(reverse=True, key=lambda x: x[0])
mid_point = len(var_with_patch) // 2
r_patch = [(patch, coor) for var, patch, coor in var_with_patch[:mid_point]]
p_patch = [(patch, coor) for var, patch, coor in var_with_patch[mid_point:]]
p_patch.reverse()
return r_patch, p_patch, img_size
def azimuthalAverage(image, center=None):
y, x = np.indices(image.shape)
if not center:
center = np.array([(x.max() - x.min()) / 2.0, (y.max() - y.min()) / 2.0])
r = np.hypot(x - center[0], y - center[1])
ind = np.argsort(r.flat)
r_sorted = r.flat[ind]
i_sorted = image.flat[ind]
r_int = r_sorted.astype(int)
deltar = r_int[1:] - r_int[:-1]
rind = np.where(deltar)[0]
nr = rind[1:] - rind[:-1]
csim = np.cumsum(i_sorted, dtype=float)
tbin = csim[rind[1:]] - csim[rind[:-1]]
radial_prof = tbin / nr
return radial_prof
def azimuthal_integral(img, epsilon=1e-8, N=50):
if len(img.shape) == 3 and img.shape[2] == 3:
img = RGB2gray(img)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
fshift += epsilon
magnitude_spectrum = 20 * np.log(np.abs(fshift))
psd1D = azimuthalAverage(magnitude_spectrum)
points = np.linspace(0, N, num=psd1D.size)
xi = np.linspace(0, N, num=N)
interpolated = griddata(points, psd1D, xi, method='cubic')
interpolated = (interpolated - np.min(interpolated)) / (np.max(interpolated) - np.min(interpolated))
return interpolated.astype(np.float32)
def positional_emb(coor, im_size, N):
img_height, img_width = im_size
center_y, center_x = coor
normalized_y = center_y / img_height
normalized_x = center_x / img_width
pos_emb = np.zeros(N)
indices = np.arange(N)
div_term = 10000 ** (2 * (indices // 2) / N)
pos_emb[0::2] = np.sin(normalized_y / div_term[0::2]) + np.sin(normalized_x / div_term[0::2])
pos_emb[1::2] = np.cos(normalized_y / div_term[1::2]) + np.cos(normalized_x / div_term[1::2])
return pos_emb
def azi_diff(img: PIL.Image.Image, patch_num, N):
r, p, im_size = get_rich_poor_patches(img)
r_len = len(r)
p_len = len(p)
patch_emb_r = np.zeros((patch_num, N))
patch_emb_p = np.zeros((patch_num, N))
positional_emb_r = np.zeros((patch_num, N))
positional_emb_p = np.zeros((patch_num, N))
coor_r = []
coor_p = []
if r_len != 0:
for idx in range(patch_num):
tmp_patch1 = r[idx % r_len][0]
tmp_coor1 = r[idx % r_len][1]
patch_emb_r[idx] = azimuthal_integral(tmp_patch1, N=N)
positional_emb_r[idx] = positional_emb(tmp_coor1, im_size, N)
coor_r.append(tmp_coor1)
if p_len != 0:
for idx in range(patch_num):
tmp_patch2 = p[idx % p_len][0]
tmp_coor2 = p[idx % p_len][1]
patch_emb_p[idx] = azimuthal_integral(tmp_patch2, N=N)
positional_emb_p[idx] = positional_emb(tmp_coor2, im_size, N)
coor_p.append(tmp_coor2)
output = {"total_emb": [patch_emb_r + positional_emb_r / 5, patch_emb_p + positional_emb_p / 5],
"positional_emb": [positional_emb_r / 5, positional_emb_p / 5], "coor": [coor_r, coor_p],
"image_size": im_size}
return output
class AttentionBlock(nn.Module):
def __init__(self, input_dim, num_heads, ff_dim, rate=0.1):
super(AttentionBlock, self).__init__()
self.attention = nn.MultiheadAttention(embed_dim=input_dim, num_heads=num_heads)
self.dropout1 = nn.Dropout(rate)
self.layer_norm1 = nn.LayerNorm(input_dim)
self.ffn = nn.Sequential(
nn.Linear(input_dim, ff_dim),
nn.ReLU(),
nn.Dropout(rate),
nn.Linear(ff_dim, input_dim),
nn.Dropout(rate)
)
self.layer_norm2 = nn.LayerNorm(input_dim)
def forward(self, x):
attn_output, _ = self.attention(x, x, x)
attn_output = self.dropout1(attn_output)
out1 = self.layer_norm1(attn_output + x)
ffn_output = self.ffn(out1)
out2 = self.layer_norm2(ffn_output + out1)
return out2
class TextureContrastClassifier(nn.Module):
def __init__(self, input_shape, num_heads=4, key_dim=64, ff_dim=256, rate=0.1):
super(TextureContrastClassifier, self).__init__()
input_dim = input_shape[1]
self.rich_attention_block = AttentionBlock(input_dim, num_heads, ff_dim, rate)
self.rich_dense = nn.Sequential(
nn.Linear(input_dim, 128),
nn.ReLU(),
nn.Dropout(0.5)
)
self.poor_attention_block = AttentionBlock(input_dim, num_heads, ff_dim, rate)
self.poor_dense = nn.Sequential(
nn.Linear(input_dim, 128),
nn.ReLU(),
nn.Dropout(0.5)
)
self.fc = nn.Sequential(
nn.Linear(128 * input_shape[0], 256),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(256, 128),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(128, 64),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(64, 32),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(32, 16),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(16, 1),
nn.Sigmoid()
)
def forward(self, rich_texture, poor_texture):
rich_texture = rich_texture.permute(1, 0, 2)
poor_texture = poor_texture.permute(1, 0, 2)
rich_attention = self.rich_attention_block(rich_texture)
rich_attention = rich_attention.permute(1, 0, 2)
rich_features = self.rich_dense(rich_attention)
poor_attention = self.poor_attention_block(poor_texture)
poor_attention = poor_attention.permute(1, 0, 2)
poor_features = self.poor_dense(poor_attention)
difference = rich_features - poor_features
difference = difference.view(difference.size(0), -1)
output = self.fc(difference)
return output
input_shape = (128, 256)
model = TextureContrastClassifier(input_shape)
model.load_state_dict(torch.load('./model_epoch_36.pth', map_location=torch.device('cpu')))
def inference(image, model):
predictions = []
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
tmp = azi_diff(image, patch_num=128, N=256)
rich = tmp["total_emb"][0]
poor = tmp["total_emb"][1]
rich_texture_tensor = torch.tensor(rich, dtype=torch.float32).unsqueeze(0).to(device)
poor_texture_tensor = torch.tensor(poor, dtype=torch.float32).unsqueeze(0).to(device)
with torch.no_grad():
output = model(rich_texture_tensor, poor_texture_tensor)
prediction = output.cpu().numpy().flatten()[0]
return prediction
# Gradio Interface
def predict(image):
prediction = inference(image, model)
return f"{prediction * 100:.2f}% chance AI-generated"
gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="text").launch()