File size: 5,114 Bytes
bad2df4 8ec9307 bad2df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
import numpy as np
import cv2
import PIL.Image
from scipy.interpolate import griddata
def RGB2gray(rgb):
r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray
def img_to_patches(img: PIL.Image.Image) -> tuple:
patch_size = 16
img = img.convert('RGB')
grayscale_imgs = []
imgs = []
coordinates = []
for i in range(0, img.height, patch_size):
for j in range(0, img.width, patch_size):
box = (j, i, j + patch_size, i + patch_size)
img_color = np.asarray(img.crop(box))
grayscale_image = cv2.cvtColor(src=img_color, code=cv2.COLOR_RGB2GRAY)
grayscale_imgs.append(grayscale_image.astype(dtype=np.int32))
imgs.append(img_color)
normalized_coord = (i + patch_size // 2, j + patch_size // 2)
coordinates.append(normalized_coord)
return grayscale_imgs, imgs, coordinates, (img.height, img.width)
def get_l1(v):
return np.sum(np.abs(v[:, :-1] - v[:, 1:]))
def get_l2(v):
return np.sum(np.abs(v[:-1, :] - v[1:, :]))
def get_l3l4(v):
l3 = np.sum(np.abs(v[:-1, :-1] - v[1:, 1:]))
l4 = np.sum(np.abs(v[1:, :-1] - v[:-1, 1:]))
return l3 + l4
def get_pixel_var_degree_for_patch(patch: np.array) -> int:
l1 = get_l1(patch)
l2 = get_l2(patch)
l3l4 = get_l3l4(patch)
return l1 + l2 + l3l4
def get_rich_poor_patches(img: PIL.Image.Image, coloured=True):
gray_scale_patches, color_patches, coordinates, img_size = img_to_patches(img)
var_with_patch = []
for i, patch in enumerate(gray_scale_patches):
if coloured:
var_with_patch.append((get_pixel_var_degree_for_patch(patch), color_patches[i], coordinates[i]))
else:
var_with_patch.append((get_pixel_var_degree_for_patch(patch), patch, coordinates[i]))
var_with_patch.sort(reverse=True, key=lambda x: x[0])
mid_point = len(var_with_patch) // 2
r_patch = [(patch, coor) for var, patch, coor in var_with_patch[:mid_point]]
p_patch = [(patch, coor) for var, patch, coor in var_with_patch[mid_point:]]
p_patch.reverse()
return r_patch, p_patch, img_size
def azimuthalAverage(image, center=None):
y, x = np.indices(image.shape)
if not center:
center = np.array([(x.max() - x.min()) / 2.0, (y.max() - y.min()) / 2.0])
r = np.hypot(x - center[0], y - center[1])
ind = np.argsort(r.flat)
r_sorted = r.flat[ind]
i_sorted = image.flat[ind]
r_int = r_sorted.astype(int)
deltar = r_int[1:] - r_int[:-1]
rind = np.where(deltar)[0]
nr = rind[1:] - rind[:-1]
csim = np.cumsum(i_sorted, dtype=float)
tbin = csim[rind[1:]] - csim[rind[:-1]]
radial_prof = tbin / nr
return radial_prof
def azimuthal_integral(img, epsilon=1e-8, N=50):
if len(img.shape) == 3 and img.shape[2] == 3:
img = RGB2gray(img)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
fshift += epsilon
magnitude_spectrum = 20 * np.log(np.abs(fshift))
psd1D = azimuthalAverage(magnitude_spectrum)
points = np.linspace(0, N, num=psd1D.size)
xi = np.linspace(0, N, num=N)
interpolated = griddata(points, psd1D, xi, method='cubic')
interpolated = (interpolated - np.min(interpolated)) / (np.max(interpolated) - np.min(interpolated))
return interpolated.astype(np.float32)
def positional_emb(coor, im_size, N):
img_height, img_width = im_size
center_y, center_x = coor
normalized_y = center_y / img_height
normalized_x = center_x / img_width
pos_emb = np.zeros(N)
indices = np.arange(N)
div_term = 10000 ** (2 * (indices // 2) / N)
pos_emb[0::2] = np.sin(normalized_y / div_term[0::2]) + np.sin(normalized_x / div_term[0::2])
pos_emb[1::2] = np.cos(normalized_y / div_term[1::2]) + np.cos(normalized_x / div_term[1::2])
return pos_emb
def azi_diff(img: PIL.Image.Image, patch_num, N):
r, p, im_size = get_rich_poor_patches(img)
r_len = len(r)
p_len = len(p)
patch_emb_r = np.zeros((patch_num, N))
patch_emb_p = np.zeros((patch_num, N))
positional_emb_r = np.zeros((patch_num, N))
positional_emb_p = np.zeros((patch_num, N))
coor_r = []
coor_p = []
if r_len != 0:
for idx in range(patch_num):
tmp_patch1 = r[idx % r_len][0]
tmp_coor1 = r[idx % r_len][1]
patch_emb_r[idx] = azimuthal_integral(tmp_patch1, N=N)
positional_emb_r[idx] = positional_emb(tmp_coor1, im_size, N)
coor_r.append(tmp_coor1)
if p_len != 0:
for idx in range(patch_num):
tmp_patch2 = p[idx % p_len][0]
tmp_coor2 = p[idx % p_len][1]
patch_emb_p[idx] = azimuthal_integral(tmp_patch2, N=N)
positional_emb_p[idx] = positional_emb(tmp_coor2, im_size, N)
coor_p.append(tmp_coor2)
output = {"total_emb": [patch_emb_r + positional_emb_r / 5, patch_emb_p + positional_emb_p / 5],
"positional_emb": [positional_emb_r / 5, positional_emb_p / 5], "coor": [coor_r, coor_p],
"image_size": im_size}
return output |