File size: 5,114 Bytes
bad2df4
 
 
 
 
 
 
 
 
 
 
 
8ec9307
bad2df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import numpy as np
import cv2
import PIL.Image
from scipy.interpolate import griddata

def RGB2gray(rgb):
    r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
    gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
    return gray

def img_to_patches(img: PIL.Image.Image) -> tuple:
    patch_size = 16
    img = img.convert('RGB')

    grayscale_imgs = []
    imgs = []
    coordinates = []

    for i in range(0, img.height, patch_size):
        for j in range(0, img.width, patch_size):
            box = (j, i, j + patch_size, i + patch_size)
            img_color = np.asarray(img.crop(box))
            grayscale_image = cv2.cvtColor(src=img_color, code=cv2.COLOR_RGB2GRAY)
            grayscale_imgs.append(grayscale_image.astype(dtype=np.int32))
            imgs.append(img_color)
            normalized_coord = (i + patch_size // 2, j + patch_size // 2)
            coordinates.append(normalized_coord)

    return grayscale_imgs, imgs, coordinates, (img.height, img.width)

def get_l1(v):
    return np.sum(np.abs(v[:, :-1] - v[:, 1:]))

def get_l2(v):
    return np.sum(np.abs(v[:-1, :] - v[1:, :]))

def get_l3l4(v):
    l3 = np.sum(np.abs(v[:-1, :-1] - v[1:, 1:]))
    l4 = np.sum(np.abs(v[1:, :-1] - v[:-1, 1:]))
    return l3 + l4

def get_pixel_var_degree_for_patch(patch: np.array) -> int:
    l1 = get_l1(patch)
    l2 = get_l2(patch)
    l3l4 = get_l3l4(patch)
    return l1 + l2 + l3l4

def get_rich_poor_patches(img: PIL.Image.Image, coloured=True):
    gray_scale_patches, color_patches, coordinates, img_size = img_to_patches(img)
    var_with_patch = []
    for i, patch in enumerate(gray_scale_patches):
        if coloured:
            var_with_patch.append((get_pixel_var_degree_for_patch(patch), color_patches[i], coordinates[i]))
        else:
            var_with_patch.append((get_pixel_var_degree_for_patch(patch), patch, coordinates[i]))

    var_with_patch.sort(reverse=True, key=lambda x: x[0])
    mid_point = len(var_with_patch) // 2
    r_patch = [(patch, coor) for var, patch, coor in var_with_patch[:mid_point]]
    p_patch = [(patch, coor) for var, patch, coor in var_with_patch[mid_point:]]
    p_patch.reverse()
    return r_patch, p_patch, img_size

def azimuthalAverage(image, center=None):
    y, x = np.indices(image.shape)
    if not center:
        center = np.array([(x.max() - x.min()) / 2.0, (y.max() - y.min()) / 2.0])
    r = np.hypot(x - center[0], y - center[1])
    ind = np.argsort(r.flat)
    r_sorted = r.flat[ind]
    i_sorted = image.flat[ind]
    r_int = r_sorted.astype(int)
    deltar = r_int[1:] - r_int[:-1]
    rind = np.where(deltar)[0]
    nr = rind[1:] - rind[:-1]
    csim = np.cumsum(i_sorted, dtype=float)
    tbin = csim[rind[1:]] - csim[rind[:-1]]
    radial_prof = tbin / nr
    return radial_prof

def azimuthal_integral(img, epsilon=1e-8, N=50):
    if len(img.shape) == 3 and img.shape[2] == 3:
        img = RGB2gray(img)
    f = np.fft.fft2(img)
    fshift = np.fft.fftshift(f)
    fshift += epsilon
    magnitude_spectrum = 20 * np.log(np.abs(fshift))
    psd1D = azimuthalAverage(magnitude_spectrum)
    points = np.linspace(0, N, num=psd1D.size)
    xi = np.linspace(0, N, num=N)
    interpolated = griddata(points, psd1D, xi, method='cubic')
    interpolated = (interpolated - np.min(interpolated)) / (np.max(interpolated) - np.min(interpolated))
    return interpolated.astype(np.float32)

def positional_emb(coor, im_size, N):
    img_height, img_width = im_size
    center_y, center_x = coor
    normalized_y = center_y / img_height
    normalized_x = center_x / img_width
    pos_emb = np.zeros(N)
    indices = np.arange(N)
    div_term = 10000 ** (2 * (indices // 2) / N)
    pos_emb[0::2] = np.sin(normalized_y / div_term[0::2]) + np.sin(normalized_x / div_term[0::2])
    pos_emb[1::2] = np.cos(normalized_y / div_term[1::2]) + np.cos(normalized_x / div_term[1::2])
    return pos_emb

def azi_diff(img: PIL.Image.Image, patch_num, N):
    r, p, im_size = get_rich_poor_patches(img)
    r_len = len(r)
    p_len = len(p)
    patch_emb_r = np.zeros((patch_num, N))
    patch_emb_p = np.zeros((patch_num, N))
    positional_emb_r = np.zeros((patch_num, N))
    positional_emb_p = np.zeros((patch_num, N))
    coor_r = []
    coor_p = []
    if r_len != 0:
        for idx in range(patch_num):
            tmp_patch1 = r[idx % r_len][0]
            tmp_coor1 = r[idx % r_len][1]
            patch_emb_r[idx] = azimuthal_integral(tmp_patch1, N=N)
            positional_emb_r[idx] = positional_emb(tmp_coor1, im_size, N)
            coor_r.append(tmp_coor1)
    if p_len != 0:
        for idx in range(patch_num):
            tmp_patch2 = p[idx % p_len][0]
            tmp_coor2 = p[idx % p_len][1]
            patch_emb_p[idx] = azimuthal_integral(tmp_patch2, N=N)
            positional_emb_p[idx] = positional_emb(tmp_coor2, im_size, N)
            coor_p.append(tmp_coor2)
    output = {"total_emb": [patch_emb_r + positional_emb_r / 5, patch_emb_p + positional_emb_p / 5],
              "positional_emb": [positional_emb_r / 5, positional_emb_p / 5], "coor": [coor_r, coor_p],
              "image_size": im_size}
    return output