File size: 4,952 Bytes
ce88d40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845a877
ce88d40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# preprocess by converting images into fingerprints and save to disk
import numpy as np
import cv2
import PIL.Image
from scipy.interpolate import griddata
import h5py
from utils import azi_diff
from tqdm import tqdm
import os
import random
import pickle
import logging
import joblib

def get_image_files(directory):
    image_extensions = {'.jpg', '.jpeg', '.png'}
    image_files = []
    for root, _, files in os.walk(directory):
        for file in files:
            if os.path.splitext(file)[1].lower() in image_extensions:
                image_files.append(os.path.join(root, file))
    return image_files

def load_image_files(class1_dirs, class2_dirs):
    class1_files = []
    for directory in tqdm(class1_dirs):
        class1_files.extend(get_image_files(directory))

    class2_files = []
    for directory in tqdm(class2_dirs):
        class2_files.extend(get_image_files(directory))

    # Ensure equal representation
    min_length = min(len(class1_files), len(class2_files))

    random.shuffle(class1_files)
    random.shuffle(class2_files)

    class1_files = class1_files[:min_length]
    class2_files = class2_files[:min_length]

    print(f"Number of files: Real = {len(class1_files)}, Fake = {len(class2_files)}")

    return class1_files, class2_files


def process_and_save_h5(file_label_pairs, patch_num, N, save_interval, joblib_batch_size, output_dir, start_by=0):
    def process_file(file_label):
        path, label = file_label
        try:
            result = azi_diff(path, patch_num, N) 
            return result, label
        except Exception as e:
            logging.error(f"Error processing file {path}: {str(e)}")
            return None, None

    num_files = len(file_label_pairs)
    num_saves = (num_files - start_by + save_interval - 1) // save_interval

    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    with tqdm(total=num_files - start_by, desc="Processing files", unit="image") as pbar:
        for save_index in range(num_saves):
            save_start = start_by + save_index * save_interval
            save_end = min(save_start + save_interval, num_files)
            batch_pairs = file_label_pairs[save_start:save_end]

            all_rich = []
            all_poor = []
            all_labels = []
            for batch_start in range(0, len(batch_pairs), joblib_batch_size):
                batch_end = min(batch_start + joblib_batch_size, len(batch_pairs))
                small_batch_pairs = batch_pairs[batch_start:batch_end]

                processed_data = joblib.Parallel(n_jobs=-1)(
                    joblib.delayed(process_file)(file_label) for file_label in small_batch_pairs
                )
                for data, label in processed_data:
                    if data is not None:
                        all_rich.append(data['total_emb'][0])
                        all_poor.append(data['total_emb'][1])
                        all_labels.append(label)

                pbar.update(len(small_batch_pairs))

            next_save_start = save_end
            output_filename = f"{output_dir}/processed_data_{next_save_start}.h5"
            logging.info(f"Saving {output_filename}")

            with h5py.File(output_filename, 'w') as h5file:
                h5file.create_dataset('rich', data=np.array(all_rich))
                h5file.create_dataset('rich', data=np.array(all_poor))
                h5file.create_dataset('labels', data=np.array(all_labels))
                
            logging.info(f"Successfully saved {output_filename}")

            del all_rich
            del all_poor
            del all_labels




load=False
class1_dirs = [
    "/home/archive/real/",
    "/home/13k_real/",
    "/home/AI_detection_dataset/Real_AI_SD_LD_Dataset/train/real/",
    "/home/AI_detection_dataset/Real_AI_SD_LD_Dataset/test/real/"
    ] #real 0

class2_dirs = [
    "/home/archive/fakeV2/fake-v2/",
    "/home/dalle3/",
    "/home/AI_detection_dataset/Real_AI_SD_LD_Dataset/train/fake/",
    "/home/AI_detection_dataset/Real_AI_SD_LD_Dataset/test/fake/"
    ] #fake 1
output_dir = "/content/drive/MyDrive/h5saves"
file_paths_pickle_save_dir='/content/drive/MyDrive/aigc_file_paths.pkl'
patch_num = 128
N = 256
save_interval = 2000
joblib_batch_size = 400
start_by = 0

if load==True:
    with open(file_paths_pickle_save_dir, 'rb') as file:
        file_label_pairs=pickle.load(file)
    print(len(file_label_pairs))
else:
    class1_files, class2_files = load_image_files(class1_dirs, class2_dirs)
    file_label_pairs = list(zip(class1_files, [0] * len(class1_files))) + list(zip(class2_files, [1] * len(class2_files)))
    random.shuffle(file_label_pairs)
    with open(file_paths_pickle_save_dir, 'wb') as file:
        pickle.dump(file_label_pairs, file)
    print(len(file_label_pairs))

logging.basicConfig(level=logging.INFO)
process_and_save_h5(file_label_pairs, patch_num, N, save_interval, joblib_batch_size, output_dir, start_by)