Spaces:
Running
Running
File size: 21,341 Bytes
28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
import logging
import os
import re
import tempfile
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
# Files/extensions to definitely include
INCLUDE_PATTERNS = [
".py",
"requirements.txt",
"Dockerfile",
".js",
".jsx",
".ts",
".tsx",
".html",
".css",
".svelte",
".vue",
".json",
".yaml",
".yml",
".toml",
"Procfile",
".sh",
]
# Files/extensions/folders to ignore
IGNORE_PATTERNS = [
".git",
".hfignore",
"README.md",
"LICENSE",
"__pycache__",
".ipynb_checkpoints",
".png",
".jpg",
".jpeg",
".gif",
".svg",
".ico",
".mp3",
".wav",
".mp4",
".mov",
".avi",
".onnx",
".pt",
".pth",
".bin",
".safetensors",
".tflite",
".pickle",
".pkl",
".joblib",
".parquet",
".csv",
".tsv",
".zip",
".tar.gz",
".gz",
".ipynb",
".DS_Store",
"node_modules",
]
# Regex to find potential Hugging Face model IDs (e.g., "org/model-name", "user/model-name")
# This is a simple heuristic and might catch non-model strings or miss complex cases.
HF_MODEL_ID_PATTERN = re.compile(r"([\"\'])([\w\-.]+/[\w\-\.]+)\1\'")
# Max length for model descriptions to keep prompts manageable
MAX_MODEL_DESC_LENGTH = 1500
SUMMARY_FILENAME = "summary_highlights.md"
PRIVACY_FILENAME = "privacy_report.md"
TLDR_FILENAME = "tldr_summary.json"
def _is_relevant_file(filename):
"""Check if a file should be included based on patterns."""
# Ignore files matching ignore patterns (case-insensitive check for some)
lower_filename = filename.lower()
if any(
pattern in lower_filename
for pattern in [".git", ".hfignore", "readme.md", "license"]
):
return False
if any(
filename.endswith(ext) for ext in IGNORE_PATTERNS if ext.startswith(".")
): # Check extensions
return False
if any(
part == pattern
for part in filename.split("/")
for pattern in IGNORE_PATTERNS
if "." not in pattern and "/" not in pattern
): # Check directory/file names
return False
if filename in IGNORE_PATTERNS: # Check full filenames
return False
# Include files matching include patterns
if any(filename.endswith(ext) for ext in INCLUDE_PATTERNS if ext.startswith(".")):
return True
if any(filename == pattern for pattern in INCLUDE_PATTERNS if "." not in pattern):
return True
# Default to False if not explicitly included (safer)
# logging.debug(f"File '{filename}' excluded by default.")
return False
def get_space_code_files(space_id: str) -> dict[str, str]:
"""
Downloads relevant code and configuration files from a Hugging Face Space.
Args:
space_id: The ID of the Hugging Face Space (e.g., 'gradio/hello_world').
Returns:
A dictionary where keys are filenames and values are file contents as strings.
Returns an empty dictionary if the space is not found or has no relevant files.
"""
code_files = {}
api = HfApi()
try:
logging.info(f"Fetching file list for Space: {space_id}")
repo_files = api.list_repo_files(repo_id=space_id, repo_type="space")
logging.info(f"Found {len(repo_files)} total files in {space_id}.")
relevant_files = [f for f in repo_files if _is_relevant_file(f)]
logging.info(f"Identified {len(relevant_files)} relevant files for download.")
for filename in relevant_files:
try:
logging.debug(f"Downloading {filename} from {space_id}...")
file_path = hf_hub_download(
repo_id=space_id,
filename=filename,
repo_type="space",
# Consider adding use_auth_token=os.getenv("HF_TOKEN") if accessing private spaces later
)
with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
content = f.read()
code_files[filename] = content
logging.debug(f"Successfully read content of {filename}")
except EntryNotFoundError:
logging.warning(
f"File {filename} listed but not found in repo {space_id}."
)
except UnicodeDecodeError:
logging.warning(
f"Could not decode file {filename} from {space_id} as UTF-8. Skipping."
)
except OSError as e:
logging.warning(f"OS error reading file {filename} from cache: {e}")
except Exception as e:
logging.error(
f"Unexpected error downloading or reading file {filename} from {space_id}: {e}"
)
except RepositoryNotFoundError:
logging.error(f"Space repository '{space_id}' not found.")
return {}
except Exception as e:
logging.error(f"Failed to list or process files for space {space_id}: {e}")
return {}
logging.info(
f"Successfully retrieved content for {len(code_files)} files from {space_id}."
)
return code_files
def extract_hf_model_ids(code_files: dict[str, str]) -> set[str]:
"""
Extracts potential Hugging Face model IDs mentioned in code files.
Args:
code_files: Dictionary of {filename: content}.
Returns:
A set of unique potential model IDs found.
"""
potential_ids = set()
for filename, content in code_files.items():
# Limit search to relevant file types
if filename.endswith((".py", ".json", ".yaml", ".yml", ".toml", ".md")):
try:
matches = HF_MODEL_ID_PATTERN.findall(content)
for _, model_id in matches:
# Basic validation: must contain exactly one '/'
if model_id.count("/") == 1:
# Avoid adding common paths that look like IDs
if not any(
part in model_id.lower()
for part in ["http", "www", "@", " ", ".", ":"]
): # Check if '/' is only separator
if len(model_id) < 100: # Avoid overly long strings
potential_ids.add(model_id)
except Exception as e:
logging.warning(f"Regex error processing file {filename}: {e}")
logging.info(f"Extracted {len(potential_ids)} potential model IDs.")
# Add simple filter for very common false positives if needed
# potential_ids = {id for id in potential_ids if id not in ['user/repo']}
return potential_ids
def get_model_descriptions(model_ids: set[str]) -> dict[str, str]:
"""
Fetches the README.md content (description) for a set of model IDs.
Args:
model_ids: A set of Hugging Face model IDs.
Returns:
A dictionary mapping model_id to its description string (or an error message).
"""
descriptions = {}
if not model_ids:
return descriptions
logging.info(f"Fetching descriptions for {len(model_ids)} models...")
for model_id in model_ids:
try:
# Check if the model exists first (optional but good practice)
# api.model_info(model_id)
# Download README.md
readme_path = hf_hub_download(
repo_id=model_id,
filename="README.md",
repo_type="model",
# Add token if needing to access private/gated models - unlikely for Space analysis
# use_auth_token=os.getenv("HF_TOKEN"),
error_if_not_found=True, # Raise error if README doesn't exist
)
with open(readme_path, "r", encoding="utf-8", errors="ignore") as f:
description = f.read()
descriptions[model_id] = description[:MAX_MODEL_DESC_LENGTH] + (
"... [truncated]" if len(description) > MAX_MODEL_DESC_LENGTH else ""
)
logging.debug(f"Successfully fetched description for {model_id}")
except RepositoryNotFoundError:
logging.warning(f"Model repository '{model_id}' not found.")
descriptions[model_id] = "[Model repository not found]"
except EntryNotFoundError:
logging.warning(f"README.md not found in model repository '{model_id}'.")
descriptions[model_id] = "[README.md not found in model repository]"
except Exception as e:
logging.error(f"Error fetching description for model '{model_id}': {e}")
descriptions[model_id] = f"[Error fetching description: {e}]"
logging.info(f"Finished fetching descriptions for {len(descriptions)} models.")
return descriptions
def list_cached_spaces(dataset_id: str, hf_token: str | None) -> list[str]:
"""Lists the space IDs (owner/name) that have cached reports in the dataset repository."""
if not hf_token:
logging.warning("HF Token not provided, cannot list cached spaces.")
return []
try:
api = HfApi(token=hf_token)
# Get all filenames in the dataset repository
all_files = api.list_repo_files(repo_id=dataset_id, repo_type="dataset")
# Extract unique directory paths that look like owner/space_name
# by checking if they contain our specific report files.
space_ids = set()
for f_path in all_files:
# Check if the file is one of our report files
if f_path.endswith(f"/{PRIVACY_FILENAME}") or f_path.endswith(
f"/{SUMMARY_FILENAME}"
):
# Extract the directory path part (owner/space_name)
parts = f_path.split("/")
if len(parts) == 3: # Expecting owner/space_name/filename.md
owner_slash_space_name = "/".join(parts[:-1])
# Basic validation: owner and space name shouldn't start with '.'
if not parts[0].startswith(".") and not parts[1].startswith("."):
space_ids.add(owner_slash_space_name)
sorted_space_ids = sorted(list(space_ids))
logging.info(
f"Found {len(sorted_space_ids)} cached space reports in {dataset_id} via HfApi."
)
return sorted_space_ids
except RepositoryNotFoundError:
logging.warning(
f"Dataset {dataset_id} not found or empty when listing cached spaces."
)
return []
except Exception as e:
logging.error(f"Error listing cached spaces in {dataset_id} via HfApi: {e}")
return [] # Return empty list on error
def check_report_exists(space_id: str, dataset_id: str, hf_token: str | None) -> bool:
"""Checks if report files already exist in the target dataset repo using HfApi."""
print(
f"[Debug Cache Check] Checking for space_id: '{space_id}' in dataset: '{dataset_id}'"
) # DEBUG
if not hf_token:
logging.warning("HF Token not provided, cannot check dataset cache.")
print("[Debug Cache Check] No HF Token, returning False.") # DEBUG
return False
try:
api = HfApi(token=hf_token)
# List ALL files in the repo
print(f"[Debug Cache Check] Listing ALL files in repo '{dataset_id}'") # DEBUG
all_repo_files = api.list_repo_files(repo_id=dataset_id, repo_type="dataset")
# DEBUG: Optionally print a subset if the list is huge
# print(f"[Debug Cache Check] First 10 files returned by API: {all_repo_files[:10]}")
# Construct the exact paths we expect for the target space_id
expected_summary_path = f"{space_id}/{SUMMARY_FILENAME}"
expected_privacy_path = f"{space_id}/{PRIVACY_FILENAME}"
print(
f"[Debug Cache Check] Expecting summary file: '{expected_summary_path}'"
) # DEBUG
print(
f"[Debug Cache Check] Expecting privacy file: '{expected_privacy_path}'"
) # DEBUG
# Check if both expected paths exist in the full list of files
summary_exists = expected_summary_path in all_repo_files
privacy_exists = expected_privacy_path in all_repo_files
exists = summary_exists and privacy_exists
print(
f"[Debug Cache Check] Summary exists in full list: {summary_exists}"
) # DEBUG
print(
f"[Debug Cache Check] Privacy exists in full list: {privacy_exists}"
) # DEBUG
print(f"[Debug Cache Check] Overall exists check result: {exists}") # DEBUG
return exists
except RepositoryNotFoundError:
logging.warning(
f"Dataset repository {dataset_id} not found or not accessible during check."
)
print(
f"[Debug Cache Check] Repository {dataset_id} not found, returning False."
) # DEBUG
except Exception as e:
# ... (error handling remains the same) ...
print(f"[Debug Cache Check] Exception caught: {type(e).__name__}: {e}") # DEBUG
# Note: 404 check based on path_in_repo is no longer applicable here
# We rely on RepositoryNotFoundError or general Exception
logging.error(
f"Error checking dataset {dataset_id} for {space_id} via HfApi: {e}"
)
print("[Debug Cache Check] Other exception, returning False.") # DEBUG
return False # Treat errors as cache miss
def download_cached_reports(
space_id: str, dataset_id: str, hf_token: str | None
) -> dict[str, str]:
"""Downloads cached reports (summary, privacy, tldr json) from the dataset repo.
Returns:
Dict containing report contents keyed by 'summary', 'privacy', 'tldr_json_str'.
Keys will be missing if a specific file is not found.
Raises error on critical download failures (repo not found, etc.).
"""
if not hf_token:
raise ValueError("HF Token required to download cached reports.")
logging.info(
f"Attempting to download cached reports for {space_id} from {dataset_id}..."
)
reports = {}
# Define paths relative to dataset root for hf_hub_download
summary_repo_path = f"{space_id}/{SUMMARY_FILENAME}"
privacy_repo_path = f"{space_id}/{PRIVACY_FILENAME}"
tldr_repo_path = f"{space_id}/{TLDR_FILENAME}" # Path for TLDR JSON
try:
# Download summary
try:
summary_path_local = hf_hub_download(
repo_id=dataset_id,
filename=summary_repo_path,
repo_type="dataset",
token=hf_token,
)
with open(summary_path_local, "r", encoding="utf-8") as f:
reports["summary"] = f.read()
logging.info(f"Successfully downloaded cached summary for {space_id}.")
except EntryNotFoundError:
logging.warning(
f"Cached summary file {summary_repo_path} not found for {space_id}."
)
except Exception as e_summary:
logging.error(
f"Error downloading cached summary for {space_id}: {e_summary}"
)
# Decide if this is critical - for now, we warn and continue
# Download privacy report
try:
privacy_path_local = hf_hub_download(
repo_id=dataset_id,
filename=privacy_repo_path,
repo_type="dataset",
token=hf_token,
)
with open(privacy_path_local, "r", encoding="utf-8") as f:
reports["privacy"] = f.read()
logging.info(
f"Successfully downloaded cached privacy report for {space_id}."
)
except EntryNotFoundError:
logging.warning(
f"Cached privacy file {privacy_repo_path} not found for {space_id}."
)
except Exception as e_privacy:
logging.error(
f"Error downloading cached privacy report for {space_id}: {e_privacy}"
)
# Decide if this is critical - for now, we warn and continue
# Download TLDR JSON
try:
tldr_path_local = hf_hub_download(
repo_id=dataset_id,
filename=tldr_repo_path,
repo_type="dataset",
token=hf_token,
)
with open(tldr_path_local, "r", encoding="utf-8") as f:
reports["tldr_json_str"] = f.read() # Store raw string content
logging.info(f"Successfully downloaded cached TLDR JSON for {space_id}.")
except EntryNotFoundError:
logging.warning(
f"Cached TLDR file {tldr_repo_path} not found for {space_id}."
)
# Don't treat TLDR absence as an error, just won't be in the dict
except Exception as e_tldr:
logging.error(
f"Error downloading cached TLDR JSON for {space_id}: {e_tldr}"
)
# Don't treat TLDR download error as critical, just won't be included
# Check if at least one report was downloaded successfully
if not reports.get("summary") and not reports.get("privacy"):
raise FileNotFoundError(
f"Failed to download *any* primary cache files (summary/privacy) for {space_id}"
)
return reports
except RepositoryNotFoundError as e_repo:
logging.error(
f"Cache download error: Dataset repo {dataset_id} not found. {e_repo}"
)
raise FileNotFoundError(f"Dataset repo {dataset_id} not found") from e_repo
except Exception as e_critical: # Catch other potential critical errors
logging.error(
f"Unexpected critical error downloading cached reports for {space_id} from {dataset_id}: {e_critical}"
)
raise IOError(
f"Failed critically during cached report download for {space_id}"
) from e_critical
def upload_reports_to_dataset(
space_id: str,
summary_report: str,
detailed_report: str,
dataset_id: str,
hf_token: str | None,
):
"""Uploads the generated reports to the specified dataset repository."""
if not hf_token:
logging.warning("HF Token not provided, skipping dataset report upload.")
return
logging.info(
f"Attempting to upload reports for {space_id} to dataset {dataset_id}..."
)
api = HfApi(token=hf_token)
# Sanitize space_id for path safety (though HF Hub usually handles this)
safe_space_id = space_id.replace("..", "")
try:
with tempfile.TemporaryDirectory() as tmpdir:
summary_path_local = os.path.join(tmpdir, SUMMARY_FILENAME)
privacy_path_local = os.path.join(tmpdir, PRIVACY_FILENAME)
with open(summary_path_local, "w", encoding="utf-8") as f:
f.write(summary_report)
with open(privacy_path_local, "w", encoding="utf-8") as f:
f.write(detailed_report)
commit_message = f"Add privacy analysis reports for Space: {safe_space_id}"
repo_url = api.create_repo(
repo_id=dataset_id,
repo_type="dataset",
exist_ok=True,
)
logging.info(f"Ensured dataset repo {repo_url} exists.")
api.upload_file(
path_or_fileobj=summary_path_local,
path_in_repo=f"{safe_space_id}/{SUMMARY_FILENAME}",
repo_id=dataset_id,
repo_type="dataset",
commit_message=commit_message,
)
logging.info(f"Successfully uploaded summary report for {safe_space_id}.")
api.upload_file(
path_or_fileobj=privacy_path_local,
path_in_repo=f"{safe_space_id}/{PRIVACY_FILENAME}",
repo_id=dataset_id,
repo_type="dataset",
commit_message=commit_message,
)
logging.info(
f"Successfully uploaded detailed privacy report for {safe_space_id}."
)
except Exception as e:
logging.error(
f"Failed to upload reports for {safe_space_id} to dataset {dataset_id}: {e}"
)
# Example usage (for testing)
# if __name__ == '__main__':
# # Make sure HF_TOKEN is set if accessing private spaces or for higher rate limits
# from dotenv import load_dotenv
# load_dotenv()
# # test_space = "gradio/hello_world"
# test_space = "huggingface-projects/diffusers-gallery" # A more complex example
# # test_space = "nonexistent/space" # Test not found
# files_content = get_space_code_files(test_space)
# if files_content:
# print(f"\n--- Files retrieved from {test_space} ---")
# for name in files_content.keys():
# print(f"- {name}")
# # print("\n--- Content of app.py (first 200 chars) ---")
# # print(files_content.get("app.py", "app.py not found")[:200])
# else:
# print(f"Could not retrieve files from {test_space}")
|