Spaces:
Running
Running
File size: 33,334 Bytes
36de078 28be125 415865b 36de078 28be125 36de078 28be125 415865b 28be125 36de078 28be125 36de078 28be125 e315258 28be125 e315258 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 415865b 36de078 415865b 36de078 415865b 36de078 415865b 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 415865b 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 2a236ed 28be125 2a236ed 28be125 6c5f4e9 d6d8868 6c5f4e9 28be125 6c5f4e9 e315258 28be125 9e422ba 36de078 9e422ba 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 36de078 28be125 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
import json
import logging
import os
import gradio as gr
from dotenv import load_dotenv
from huggingface_hub import HfApi
# Import analysis pipeline helpers
from analysis_utils import (check_cache_and_download, check_endpoint_status,
fetch_and_validate_code, format_tldr_prompt,
generate_and_parse_tldr, generate_detailed_report,
generate_summary_report, parse_tldr_json_response,
render_data_details_markdown, render_tldr_markdown,
upload_results)
# Import general utils
from utils import list_cached_spaces # Added import
# Removed LLM interface imports, handled by analysis_utils
# from llm_interface import ERROR_503_DICT
# from llm_interface import parse_qwen_response, query_qwen_endpoint
# Removed prompts import, handled by analysis_utils
# from prompts import format_privacy_prompt, format_summary_highlights_prompt
# Removed specific utils imports now handled via analysis_utils
# from utils import (
# check_report_exists,
# download_cached_reports,
# get_space_code_files,
# upload_reports_to_dataset,
# )
# Configure logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
# Load environment variables from .env file
# This is important to ensure API keys and endpoints are loaded before use
load_dotenv()
# --- Constants ---
HF_TOKEN = os.getenv("HF_TOKEN")
ENDPOINT_NAME = "qwen2-5-coder-32b-instruct-pmf"
DATASET_ID = "yjernite/spaces-privacy-reports"
CACHE_INFO_MSG = (
"\n\n*(Report retrieved from cache)*" # Still needed for dropdown cache hit message
)
DEFAULT_SELECTION = "HuggingFaceTB/SmolVLM2"
# TRUNCATION_WARNING now defined and used within analysis_utils
# TRUNCATION_WARNING = """**β οΈ Warning:** The input data (code and/or prior analysis) was too long for the AI model's context limit and had to be truncated. The analysis below may be incomplete or based on partial information.\n\n---\n\n"""
ERROR_503_USER_MESSAGE = """It appears that the analysis model endpoint is currently down or starting up.
You have a few options:
* **Wait & Retry:** Try clicking "Get Space Report" again in ~3-5 minutes. Endpoints often scale down to save resources and take a short time to wake up.
* **Select Cached Report:** Use the dropdown above to view a report for a Space that has already been analyzed.
* **Request Analysis:** If the error persists, please [open an issue or discussion](https://huggingface.co/spaces/yjernite/space-privacy/discussions) in the Space's Community tab requesting analysis for your target Space ID. We can run the job manually when the endpoint is available.
"""
def _run_live_analysis(space_id: str, progress=gr.Progress(track_tqdm=True)):
"""
Performs the full analysis pipeline using helper functions from analysis_utils.
Yields tuples of Gradio updates.
"""
total_steps = 9 # Increased step count for TLDR generation
current_step = 0
summary_report = ""
privacy_report = ""
tldr_data = None
tldr_markdown_content = "*TLDR loading...*"
data_details_content = (
"*Data details loading...*" # Default message for new component
)
# Initial message before first step
tldr_status_message = "*Starting analysis...*"
# --- Step 1: Check Cache ---
current_step += 1
progress_desc = f"Step {current_step}/{total_steps}: Checking cache..."
progress(current_step / total_steps, desc=progress_desc)
tldr_status_message = f"*{progress_desc}*"
yield (
gr.update(value=tldr_status_message, visible=True), # TLDR shows progress
gr.update(value="*Checking cache...*", visible=True),
gr.update(value="Checking cache for existing reports...", visible=True),
gr.update(value="", visible=True),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
)
cache_result = check_cache_and_download(space_id, DATASET_ID, HF_TOKEN)
if cache_result["status"] == "cache_hit":
progress(total_steps / total_steps, desc="Complete (from cache)")
# Try to parse and render TLDR from cache
tldr_json_str = cache_result.get("tldr_json_str")
rendered_tldr = "*TLDR not found in cache.*"
if tldr_json_str:
try:
cached_tldr_data = json.loads(tldr_json_str)
# Render both parts
rendered_tldr = render_tldr_markdown(cached_tldr_data, space_id)
rendered_data_details = render_data_details_markdown(cached_tldr_data)
except Exception as parse_err:
logging.warning(
f"Failed to parse cached TLDR JSON for {space_id}: {parse_err}"
)
rendered_tldr = "*Error parsing cached TLDR.*"
rendered_data_details = (
"*Could not load data details due to parsing error.*"
)
yield (
gr.update(value=rendered_tldr, visible=True),
gr.update(value=rendered_data_details, visible=True),
gr.update(value=cache_result["summary"], visible=True),
gr.update(value=cache_result["privacy"], visible=True),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
)
return # End generation successfully from cache
elif cache_result["status"] == "cache_error":
# Display final error in TLDR field
tldr_status_message = (
f"*Cache download failed. {cache_result.get('ui_message', '')}*"
)
data_details_content = "*Data details unavailable due to cache error.*"
yield (
gr.update(value=tldr_status_message, visible=True),
gr.update(value=data_details_content, visible=True),
gr.update(value=cache_result["ui_message"], visible=True),
gr.update(value="", visible=True),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
)
# Still continue to live analysis if cache download fails
elif cache_result["status"] == "cache_miss":
tldr_status_message = f"*{progress_desc} - Cache miss.*" # Update status
data_details_content = "*Generating report...*"
yield (
gr.update(value=tldr_status_message, visible=True),
gr.update(value=data_details_content, visible=True),
gr.update(value="Cache miss. Starting live analysis...", visible=True),
gr.update(value="", visible=True),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
)
elif "error_message" in cache_result:
# Display final error in TLDR field
tldr_status_message = (
f"*Cache check failed. {cache_result.get('error_message', '')}*"
)
data_details_content = "*Data details unavailable due to cache error.*"
yield (
gr.update(value=tldr_status_message, visible=True),
gr.update(value=data_details_content, visible=True),
gr.update(
value=f"Cache check failed: {cache_result.get('error_message', 'Unknown error')}. Proceeding with live analysis...",
visible=True,
),
gr.update(value="", visible=True),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
)
# Still continue if cache check fails
# --- Step 2: Check Endpoint Status ---
current_step += 1
progress_desc = f"Step {current_step}/{total_steps}: Checking endpoint..."
progress(current_step / total_steps, desc=progress_desc)
tldr_status_message = f"*{progress_desc}*"
yield (
gr.update(value=tldr_status_message, visible=True), # TLDR shows progress
gr.update(),
gr.update(value="Checking analysis model endpoint status...", visible=True),
gr.update(value="", visible=True),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
)
endpoint_result = check_endpoint_status(
ENDPOINT_NAME, HF_TOKEN, ERROR_503_USER_MESSAGE
)
if endpoint_result["status"] == "error":
progress(total_steps / total_steps, desc="Endpoint Error")
# Display final error in TLDR field
tldr_markdown_content = endpoint_result["ui_message"]
yield (
gr.update(value=tldr_markdown_content, visible=True),
gr.update(value="", visible=False),
gr.update(value="", visible=False),
gr.update(value="", visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
return
# --- Step 3: Fetch Code Files ---
current_step += 1
progress_desc = f"Step {current_step}/{total_steps}: Fetching code..."
progress(current_step / total_steps, desc=progress_desc)
tldr_status_message = f"*{progress_desc}*"
yield (
gr.update(value=tldr_status_message, visible=True), # TLDR shows progress
gr.update(),
gr.update(value="Fetching code files from the Space...", visible=True),
gr.update(value="", visible=True),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
)
code_result = fetch_and_validate_code(space_id)
if code_result["status"] == "error":
progress(total_steps / total_steps, desc="Code Fetch Error")
# Display final error in TLDR field
tldr_markdown_content = (
f"**Error:** {code_result.get('ui_message', 'Failed to fetch code.')}"
)
yield (
gr.update(value=tldr_markdown_content, visible=True),
gr.update(value="", visible=False),
gr.update(value="", visible=False),
gr.update(value="Analysis Canceled", visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True, open=False),
)
return
code_files = code_result["code_files"]
# --- Step 4: Generate DETAILED Privacy Report (LLM Call 1) ---
current_step += 1
progress_desc = (
f"Step {current_step}/{total_steps}: Generating privacy report (AI Call 1)..."
)
progress(current_step / total_steps, desc=progress_desc)
tldr_status_message = f"*{progress_desc}*"
yield (
gr.update(value=tldr_status_message, visible=True), # TLDR shows progress
gr.update(),
gr.update(
value="Generating detailed privacy report (AI Call 1)...", visible=True
),
gr.update(value="Generating detailed privacy report via AI...", visible=True),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=True),
)
privacy_result = generate_detailed_report(
space_id, code_files, ERROR_503_USER_MESSAGE
)
if privacy_result["status"] == "error":
progress(total_steps / total_steps, desc="Privacy Report Error")
# Display final error in TLDR field
tldr_markdown_content = f"**Error:** {privacy_result.get('ui_message', 'Failed during detailed report generation.')}"
yield (
gr.update(value=tldr_markdown_content, visible=True),
gr.update(value="", visible=False),
gr.update(value="", visible=False),
gr.update(value="", visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
return
privacy_report = privacy_result["report"]
# Update UI with successful detailed report
yield (
gr.update(value=tldr_status_message, visible=True), # Still show progress
gr.update(),
gr.update(
value="Detailed privacy report generated. Proceeding...", visible=True
),
gr.update(value=privacy_report, visible=True),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=True),
)
# --- Step 5: Fetch Model Descriptions (Placeholder/Optional) ---
current_step += 1
progress_desc = f"Step {current_step}/{total_steps}: Extracting model info..."
progress(current_step / total_steps, desc=progress_desc)
tldr_status_message = f"*{progress_desc}*"
logging.info(progress_desc + " (Placeholder)")
yield (
gr.update(value=tldr_status_message, visible=True), # TLDR shows progress
gr.update(),
gr.update(value="Extracting model info...", visible=True),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
)
# model_ids = extract_hf_model_ids(code_files) # utils function not imported
# model_descriptions = get_model_descriptions(model_ids) # utils function not imported
# Add model_descriptions to context if needed for summary prompt later
# --- Step 6: Generate Summary + Highlights Report (LLM Call 2) ---
current_step += 1
progress_desc = (
f"Step {current_step}/{total_steps}: Generating summary (AI Call 2)..."
)
progress(current_step / total_steps, desc=progress_desc)
tldr_status_message = f"*{progress_desc}*"
yield (
gr.update(value=tldr_status_message, visible=True), # TLDR shows progress
gr.update(),
gr.update(value="Generating summary & highlights (AI Call 2)...", visible=True),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
)
summary_result = generate_summary_report(
space_id, code_files, privacy_report, ERROR_503_USER_MESSAGE
)
if (
summary_result["status"] == "error_503_summary"
or summary_result["status"] == "error_summary"
):
progress(total_steps / total_steps, desc="Summary Report Error")
# Display error in TLDR, show partial results below
tldr_markdown_content = f"**Error:** {summary_result.get('ui_message', 'Failed during summary generation.')}"
data_details_content = "*Data details may be incomplete.*"
yield (
gr.update(value=tldr_markdown_content, visible=True),
gr.update(value=data_details_content, visible=True),
gr.update(value=summary_result["ui_message"], visible=True),
gr.update(value=privacy_report, visible=True),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=True),
)
return
elif summary_result["status"] != "success":
progress(total_steps / total_steps, desc="Summary Report Error")
# Display error in TLDR, show partial results below
tldr_markdown_content = f"**Error:** Unexpected error generating summary: {summary_result.get('ui_message', 'Unknown')}"
data_details_content = "*Data details unavailable.*"
yield (
gr.update(value=tldr_markdown_content, visible=True),
gr.update(value=data_details_content, visible=True),
gr.update(
value=f"Unexpected error generating summary: {summary_result.get('ui_message', 'Unknown')}",
visible=True,
),
gr.update(value=privacy_report, visible=True),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=True),
)
return
summary_report = summary_result["report"]
# Update UI with successful summary report before TLDR generation
tldr_status_message = (
f"*{progress_desc} - Success. Generating TLDR...*" # Update status
)
data_details_content = "*Generating data details...*"
yield (
gr.update(value=tldr_status_message, visible=True),
gr.update(value=data_details_content, visible=True),
gr.update(value=summary_report, visible=True),
gr.update(value=privacy_report, visible=True),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=True),
)
# --- Step 7: Generate TLDR --- (New Step)
current_step += 1
progress_desc = f"Step {current_step}/{total_steps}: Generating TLDR summary..."
progress(current_step / total_steps, desc=progress_desc)
tldr_status_message = f"*{progress_desc}*"
yield (
gr.update(value=tldr_status_message, visible=True),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
)
tldr_data = None # Reset tldr_data before attempt
try:
# Call the combined helper function from analysis_utils
tldr_data = generate_and_parse_tldr(privacy_report, summary_report)
if tldr_data:
logging.info(f"Successfully generated and parsed TLDR for {space_id}.")
tldr_markdown_content = render_tldr_markdown(tldr_data, space_id)
data_details_content = render_data_details_markdown(tldr_data)
else:
logging.warning(
f"Failed to generate or parse TLDR for {space_id}. Proceeding without it."
)
tldr_markdown_content = "*TLDR generation failed.*"
data_details_content = "*Data details generation failed.*"
except Exception as tldr_err:
# This catch block might be redundant now if generate_and_parse_tldr handles its errors
logging.error(
f"Unexpected error during TLDR generation step call for {space_id}: {tldr_err}"
)
tldr_markdown_content = "*Error during TLDR generation step.*"
data_details_content = "*Error generating data details.*"
tldr_data = None # Ensure it's None on error
# Update UI including the generated (or failed) TLDR before upload
yield (
gr.update(value=tldr_markdown_content, visible=True),
gr.update(value=data_details_content, visible=True),
gr.update(),
gr.update(),
gr.update(visible=True, open=False),
gr.update(),
gr.update(),
)
# --- Step 8: Upload to Cache --- (Old Step 7)
current_step += 1
progress_desc = f"Step {current_step}/{total_steps}: Uploading to cache..."
progress(current_step / total_steps, desc=progress_desc)
tldr_status_message = f"*{progress_desc}*" # Display final action in TLDR field
yield (
gr.update(value=tldr_status_message, visible=True),
gr.update(),
gr.update(value="Uploading results to cache...", visible=True),
gr.update(),
gr.update(),
gr.update(),
gr.update(),
)
upload_needed = (
cache_result["status"] != "cache_hit"
and cache_result["status"] != "cache_error"
)
if upload_needed:
# Call imported function, now passing tldr_data
upload_result = upload_results(
space_id,
summary_report,
privacy_report,
DATASET_ID,
HF_TOKEN,
tldr_json_data=tldr_data,
)
if upload_result["status"] == "error":
# Ensure logging uses f-string if adding step count here
logging.error(
f"Cache upload failed: {upload_result.get('message', 'Unknown error')}"
)
# Non-critical, don't stop the UI, just log
elif upload_result["status"] == "skipped":
logging.info(f"Cache upload skipped: {upload_result.get('reason', '')}")
else:
logging.info(
"Skipping cache upload as results were loaded from cache or cache check failed."
)
# Update UI including the generated (or failed) TLDR before upload
# Yield 7 updates
yield (
gr.update(value=tldr_markdown_content, visible=True),
gr.update(value=data_details_content, visible=True),
gr.update(value=summary_report, visible=True),
gr.update(value=privacy_report, visible=True),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
)
# --- Step 9: Final Update --- (Old Step 8)
current_step += 1
progress_desc = f"Step {current_step}/{total_steps}: Analysis Complete!"
progress(current_step / total_steps, desc=progress_desc)
logging.info(progress_desc + f" Analysis complete for {space_id}.")
# Yield final state again to ensure UI is correct after potential upload messages
# Display final generated TLDR and Data Details
yield (
gr.update(value=tldr_markdown_content, visible=True),
gr.update(value=data_details_content, visible=True),
gr.update(value=summary_report, visible=True),
gr.update(value=privacy_report, visible=True),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
)
# --- Original Input Handling Wrapper (updated yields for initial errors) ---
def get_space_report_wrapper(
selected_cached_space: str | None,
new_space_id: str | None,
progress=gr.Progress(track_tqdm=True),
):
"""
Wrapper function to decide whether to fetch cache or run live analysis.
Handles the logic based on Dropdown and Textbox inputs.
Yields tuples of Gradio updates.
"""
target_space_id = None
source = "new" # Assume new input unless dropdown is chosen
# Prioritize new_space_id if provided
if new_space_id and new_space_id.strip():
target_space_id = new_space_id.strip()
if target_space_id == selected_cached_space:
source = "dropdown_match" # User typed ID that exists in dropdown
else:
source = "new"
elif selected_cached_space:
target_space_id = selected_cached_space
source = "dropdown"
if not target_space_id:
# Yield 7 updates
yield (
gr.update(value="*Please provide a Space ID.*", visible=True),
gr.update(value="", visible=False),
gr.update(
value="Please select an existing report or enter a new Space ID.",
visible=True,
),
gr.update(value="", visible=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=False),
)
return
if "/" not in target_space_id:
# Yield 7 updates
yield (
gr.update(value="*Invalid Space ID format.*", visible=True),
gr.update(value="", visible=False),
gr.update(
value=f"Invalid Space ID format: '{target_space_id}'. Use 'owner/name'.",
visible=True,
),
gr.update(value="", visible=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=False),
)
return
logging.info(f"Request received for: '{target_space_id}' (Source: {source})")
if source == "dropdown":
progress(0.1, desc="Fetching selected cached report...")
# Yield 7 updates (initial placeholder)
yield (
gr.update(value="*Loading TLDR...*", visible=True),
gr.update(value="*Loading data details...*", visible=True),
gr.update(value="Fetching selected cached report...", visible=True),
gr.update(value="", visible=True),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
)
cache_result = check_cache_and_download(target_space_id, DATASET_ID, HF_TOKEN)
if cache_result["status"] == "cache_hit":
logging.info(
f"Successfully displayed cached reports for selected '{target_space_id}'."
)
progress(1.0, desc="Complete (from cache)")
# Use the cached report text directly here, adding the cache message is done within the helper now.
# Parse and render TLDR if available
tldr_json_str = cache_result.get("tldr_json_str")
rendered_tldr = "*TLDR not found in cache.*"
if tldr_json_str:
try:
cached_tldr_data = json.loads(tldr_json_str)
rendered_tldr = render_tldr_markdown(
cached_tldr_data, target_space_id
)
rendered_data_details = render_data_details_markdown(
cached_tldr_data
)
except Exception as parse_err:
logging.warning(
f"Failed to parse cached TLDR JSON for {target_space_id}: {parse_err}"
)
rendered_tldr = "*Error parsing cached TLDR.*"
rendered_data_details = (
"*Could not load data details due to parsing error.*"
)
yield (
gr.update(value=rendered_tldr, visible=True),
gr.update(value=rendered_data_details, visible=True),
gr.update(value=cache_result["summary"], visible=True),
gr.update(value=cache_result["privacy"], visible=True),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
)
else: # Cache miss or error for a dropdown selection is an error state
error_msg = cache_result.get(
"ui_message",
f"Failed to find or download cached report for selected '{target_space_id}'.",
)
logging.error(error_msg)
progress(1.0, desc="Error")
yield (
gr.update(value="*TLDR load failed.*", visible=True),
gr.update(value="*Data details load failed.*", visible=True),
gr.update(value=error_msg, visible=True),
gr.update(value="", visible=False),
gr.update(visible=True, open=False),
gr.update(visible=True, open=False),
gr.update(visible=False),
)
return # Stop after handling dropdown source
# --- Live Analysis or Check Cache for New Input ---
# If it came from the textbox OR was a dropdown match, run the full live analysis pipeline
# which includes its own cache check at the beginning.
else: # source == "new" or source == "dropdown_match"
# Yield intermediate updates from the generator by iterating through it
for update_tuple in _run_live_analysis(target_space_id, progress):
yield update_tuple
# --- Load Initial Data Function (for demo.load) ---
def load_cached_list():
"""Fetches the list of cached spaces and determines the default selection."""
print("Running demo.load: Fetching list of cached spaces...")
# Use os.getenv here directly as HF_TOKEN might be loaded after initial import
token = os.getenv("HF_TOKEN")
cached_list = list_cached_spaces(DATASET_ID, token)
default_value = DEFAULT_SELECTION if DEFAULT_SELECTION in cached_list else None
if not cached_list:
print(
"WARNING: No cached spaces found or failed to fetch list during demo.load."
)
# Return an update object for the dropdown using gr.update()
return gr.update(choices=cached_list, value=default_value)
# --- Gradio Interface Definition ---
# Use HTML/CSS for centering the title
TITLE = "<div style='text-align: center;'><h1>π€ Space Privacy Analyzer π΅οΈ</h1></div>\n<div style='text-align: center;'><h4>Automatic code Data transfer review powered by <a href='https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct' target='_blank'>Qwen2.5-Coder-32B-Instruct</a></h4></div>"
DESCRIPTION = """
### Hugging Face π€ Space - Privacy & Data Check
[Hugging Face π€ Spaces](https://huggingface.co/spaces) offer a convenient way to build and share code demos online; especially leveraging and exploring AI systems.
In most cases, the code for these demos is open source — which provides a unique opportunity to **examine how privacy and data transfers are managed**.
This demo leverages a code analysis model ([Qwen2.5-Coder-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct)) to help explore privacy questions in two steps:
1. Obtain and **parse the code** of a Space to identify:
- data inputs,
- AI model use,
- API calls,
- data transfers.
2. Generate a summary of the Space's function and highlight **key privacy points**.
Use the dropdown menu below to explore the [reports generated for some popular Spaces](https://huggingface.co/datasets/yjernite/spaces-privacy-reports/tree/main), or enter a new Space ID to query your own π
*Please note the following limitations:*
- *The model may miss important details in the code, especially when it leverages Docker files or external libraries.*
- *This app uses the base Qwen Coder model without specific adaptation to the task. We'd love to discuss how to improve this, if you want to participate [feel free to open a discussion!](https://huggingface.co/spaces/yjernite/space-privacy/discussions)*
"""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(TITLE) # This will now render the centered HTML
with gr.Row():
with gr.Column(scale=1): # Left column for inputs
description_accordion = gr.Accordion(
"What Privacy Questions do π€ Spaces Raise? Click here for Demo Description π",
open=False,
visible=True,
)
with description_accordion:
gr.Markdown(DESCRIPTION)
cached_spaces_dropdown = gr.Dropdown(
label="Select Existing Report",
info="Select a Space whose report has been previously generated.",
choices=[], # Initialize empty, will be populated by demo.load
value=None, # Initialize empty
)
space_id_input = gr.Textbox(
label="Or Enter New Space ID",
placeholder="owner/space-name",
info="Enter a new Space ID to analyze (takes precedence over selection).",
)
analyze_button = gr.Button("Get Space Report", variant="primary", scale=1)
with gr.Column(scale=1): # Right column for outputs
# Define TLDR Markdown component first, always visible
gr.Markdown("### Privacy TLDR π΅οΈ\n", visible=True)
tldr_markdown = gr.Markdown(
"*Select or enter a Space ID to get started.*", visible=True
)
# Define Accordions next, closed by default, visible
data_types_accordion = gr.Accordion(
"Data Types at Play", open=False, visible=True
)
with data_types_accordion:
data_details_markdown = gr.Markdown("*Data details will appear here.*")
summary_accordion = gr.Accordion(
"Summary & Privacy Highlights",
open=False,
visible=True, # Changed to open=False
)
privacy_accordion = gr.Accordion(
"Detailed Privacy Analysis Report",
open=False,
visible=True, # Changed to open=False
)
with summary_accordion:
summary_markdown = gr.Markdown(
"Enter or select a Space ID and click Get Report.",
show_copy_button=True,
)
with privacy_accordion:
privacy_markdown = gr.Markdown(
"Detailed report will appear here.", show_copy_button=True
)
# --- Event Listeners ---
# Load event to populate the dropdown when the UI loads for a user session
demo.load(fn=load_cached_list, inputs=None, outputs=cached_spaces_dropdown)
# Button click event
analyze_button.click(
fn=get_space_report_wrapper,
inputs=[cached_spaces_dropdown, space_id_input],
outputs=[
tldr_markdown,
data_details_markdown, # Added data details output
summary_markdown,
privacy_markdown,
data_types_accordion, # Added data details accordion output
summary_accordion,
privacy_accordion,
],
show_progress="full",
)
# --- Application Entry Point ---
if __name__ == "__main__":
logging.info("Starting Gradio application...")
demo.launch()
|