Spaces:
Sleeping
Sleeping
File size: 25,850 Bytes
a044e1e 9997d43 a044e1e 9997d43 a044e1e 9997d43 a044e1e 2e6a46f a044e1e 9997d43 a044e1e 9997d43 a044e1e 2e6a46f 9997d43 a044e1e 2e6a46f a044e1e 9997d43 a044e1e 2e6a46f 9997d43 a044e1e 9997d43 a044e1e 9997d43 a044e1e 9997d43 2e6a46f a044e1e 2e6a46f a044e1e 9997d43 b2ab1d4 a044e1e 9997d43 a044e1e 9997d43 6a3fd10 3ce1303 9997d43 3ce1303 9997d43 3ce1303 9997d43 a044e1e 9997d43 a044e1e 2e6a46f a044e1e 2e6a46f a044e1e 2e6a46f a044e1e 9997d43 a044e1e 9997d43 a044e1e 9997d43 6a3fd10 9997d43 a044e1e 9997d43 a044e1e 2e6a46f a044e1e 2e6a46f 6a3fd10 2e6a46f a044e1e 6a3fd10 a044e1e 6a3fd10 a044e1e 6a3fd10 2e6a46f a044e1e 6a3fd10 9997d43 6a3fd10 2e6a46f 6a3fd10 9997d43 6a3fd10 9997d43 a044e1e 2e6a46f a044e1e 6a3fd10 9997d43 6a3fd10 9997d43 6a3fd10 9997d43 2e6a46f 6a3fd10 9997d43 2e6a46f 9997d43 a044e1e 2e6a46f a044e1e 9997d43 a044e1e 9997d43 a044e1e 9997d43 2e6a46f 9997d43 2e6a46f a044e1e 9997d43 6a3fd10 a044e1e 9997d43 a044e1e 9997d43 2e6a46f 9997d43 2e6a46f 9997d43 6a3fd10 9997d43 6a3fd10 9997d43 a044e1e 9997d43 6a3fd10 9997d43 6a3fd10 9997d43 6a3fd10 9997d43 a044e1e 6a3fd10 9997d43 a044e1e 6a3fd10 9997d43 a044e1e 6a3fd10 9997d43 6a3fd10 a044e1e 2e6a46f a044e1e 9997d43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
import gradio as gr
import json
from datetime import datetime
import os
import logging
import random
# Logger setup (unchanged)
def _setup_logger():
log_format = logging.Formatter("[%(asctime)s %(levelname)s] %(message)s")
logger = logging.getLogger()
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
console_handler.setFormatter(log_format)
logger.handlers = [console_handler]
return logger
logger = _setup_logger()
DATA_DIR = "annotations_data2"
os.makedirs(DATA_DIR, exist_ok=True)
# Load questions from JSON (unchanged)
with open("test_pairs2.json", "r") as f:
response_pairs = json.load(f)
# Function to generate assignments ensuring each question gets 7 labels
def generate_assignments(num_questions=120, num_annotators=30, labels_per_question=7, questions_per_annotator=28):
assignments = {f"annotator_{i+1}": [] for i in range(num_annotators)}
question_assignments = {i: [] for i in range(num_questions)}
annotator_capacities = [questions_per_annotator] * num_annotators
for q in range(num_questions):
available_annotators = [(a, annotator_capacities[a]) for a in range(num_annotators) if annotator_capacities[a] > 0]
if len(available_annotators) < labels_per_question:
raise ValueError(f"Not enough annotators with capacity for question {q}")
available_annotators.sort(key=lambda x: x[1], reverse=True)
selected_annotators = [a for a, _ in available_annotators[:labels_per_question]]
for a in selected_annotators:
assignments[f"annotator_{a+1}"].append(q)
question_assignments[q].append(a)
annotator_capacities[a] -= 1
return assignments, question_assignments
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;500;700&display=swap');
body { font-family: 'Roboto', sans-serif !important; line-height: 1.6; }
.panel { border: 1px solid #e5e7eb !important; border-radius: 12px !important; padding: 20px !important; }
button { font-weight: 500 !important; transition: all 0.2s ease !important; font-family: 'Roboto', sans-serif !important; }
button:hover { transform: translateY(-1px); }
.progress { color: #4f46e5; font-weight: 500; }
textarea { border-radius: 8px !important; padding: 12px !important; font-family: 'Roboto', sans-serif !important; }
.selected-response { border: 2px solid #4f46e5 !important; background-color: #f5f3ff; }
.instruction-panel { background: #f8f9fa !important; border: 1px solid #e0e0e0 !important; border-radius: 12px !important; padding: 25px !important; margin-bottom: 25px !important; }
.criteria-list { margin-left: 20px !important; list-style-type: none !important; }
.criteria-item { padding: 8px 0 !important; }
.highlight { color: #4f46e5; font-weight: 500; }
"""
# Updated State class to include selected_indices, form_responses, and forms_completed
class State:
def __init__(self):
self.current_idx = 0
self.prolific_id = ""
self.selected_indices = [] # List of 28 question indices for this user
self.annotations = [] # Annotations for the 28 questions
self.form_responses = {} # Responses to post-test forms
self.forms_completed = False # Flag for form completion
self.start_time = datetime.now()
state = State()
ASSIGNED_FILE = "assigned.json"
def load_assigned():
if os.path.exists(ASSIGNED_FILE):
with open(ASSIGNED_FILE, "r") as f:
return json.load(f)
return {}
def save_assigned(assigned):
with open(ASSIGNED_FILE, "w") as f:
json.dump(assigned, f, indent=2)
def get_next_available_assignment(assigned, total_assignments=30):
for i in range(1, total_assignments + 1):
key = f"annotator_{i}"
if key not in assigned.values():
return key
return None
# Updated save_annotations to include new fields
def save_annotations():
if not state.prolific_id:
return
filename = f"{state.prolific_id}_latest.json"
filepath = os.path.join(DATA_DIR, filename)
data = {
"prolific_id": state.prolific_id,
"assignment_key": state.assignment_key,
"selected_indices": state.selected_indices,
"duration": (datetime.now() - state.start_time).total_seconds(),
"current_idx": state.current_idx,
"annotations": state.annotations,
"form_responses": state.form_responses,
"forms_completed": state.forms_completed
}
with open(filepath, "w") as f:
json.dump(data, f, indent=2)
logger.info(f"Saved annotations to {filepath}")
return filepath
# Updated load_latest_data to load new fields
def load_latest_data(prolific_id):
filename = f"{prolific_id}_latest.json"
filepath = os.path.join(DATA_DIR, filename)
if os.path.exists(filepath):
try:
data = json.load(open(filepath))
state.selected_indices = data.get("selected_indices", [])
state.annotations = data.get("annotations", [])
state.form_responses = data.get("form_responses", {})
state.forms_completed = data.get("forms_completed", False)
state.current_idx = min(max(data.get("current_idx", 0), 0), 27)
return data
except Exception as e:
logger.error(f"Error loading {filepath}: {e}")
return None
INSTRUCTION = """
### Welcome! 🎉
In this task, you'll act as a judge comparing two AI chatbot responses. Your goal is to determine which response is better based on specific criteria.
### 📋 Task Overview:
- You'll evaluate multiple questions (prompts), each with two responses (Response A and B)
- Select the better response for each question based on the criteria below
- Your progress will be tracked
- After completing all questions, you'll answer a few post-test forms
### 🏅 Evaluation Criteria:
1. **Perceived Usefulness**
→ Does the answer address the question effectively and provide relevant information?
2. **Social Presence**
→ Does the answer creates "the feeling of being there with a 'real' person"?
### 🚀 Getting Started:
1. Input your Prolific ID to begin
2. Read the question carefully
3. Compare both responses side-by-side
4. Select the better response using the radio buttons
5. Provide optional feedback and confidence rating
6. Click "Next" to continue or "Previous" to review
**Note:** You need select a response and confidence level before proceeding to the next question.
*Thank you for contributing to our research! Your input is valuable.*
"""
MINI_INSTRUCTION = """You’ll compare two AI chatbot answers for different questions and pick the better one. Read the question, then look at Response A and Response B. Choose the one that’s better based on: Perceived Usefulness (answers well, gives useful info), and Social Presence (understands feelings, fits the situation).
*Select your choice and rate your confidence. Click "Next" to move on or "Previous" to go back. You must pick a response and confidence level to continue. Thanks for helping with our research!*
"""
# Define post-test form questions (placeholders; replace with actual questions if available)
forms_questions = {
"Neuro-QoL Cognition Function": [
{"question": "In the past 7 days, I had to read something several times to understand it.", "options": ["Never", "Rarely", "Sometimes", "Often", "Very Often"]},
{"question": "In the past 7 days, I had to work really hard to pay attention or I would make a mistake.", "options": ["Never", "Rarely", "Sometimes", "Often", "Very Often"]},
{"question": "In the past 7 days, I had trouble concentrating.", "options": ["Never", "Rarely", "Sometimes", "Often", "Very Often"]},
{"question": "In the past 7 days, I had trouble remembering things.", "options": ["Never", "Rarely", "Sometimes", "Often", "Very Often"]}
],
"Wong and Law Emotional Intelligence Scale (WLEIS)": [
# // SEA
{"question": "I have a good sense of why I have certain feelings most of the time.", "options": ["Strongly Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree"]},
{"question": "I have good understanding of my own emotions.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
{"question": "I really understand what I feel.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
{"question": "I always know whether I am happy or not.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
# // OEA
{"question": "I always know my friends’ emotions from their behavior.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
{"question": "I am a good observer of others’ emotions.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
{"question": "I am sensitive to the feelings and emotions of others.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
{"question": "I have good understanding of the emotions of people around me.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
# // UOE
{"question": "I always set goals for myself and then try my best to achieve them.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
{"question": "I always tell myself I am a competent person.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
{"question": "I am a self-motivated person.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
{"question": "I would always encourage myself to try my best.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
# ROE
{"question": "I am able to control my temper and handle difficulties rationally.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
{"question": "I can always calm down quickly when I am very angry.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
{"question": "I have good control of my own emotions.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
{"question": "I can always stay calm in stressful situations.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]}
],
"Algorithmic Aversion": [
# Trust in LLM
{"question": "I trust the answers provided by AI chatbots (e.g., ChatGPT) to be accurate.", "options": ["Strongly Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree"]},
{"question": "I feel confident relying on an AI chatbot for important tasks.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
{"question": "I worry that AI chatbots might give me incorrect information.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
# Preference for Human vs. LLM
{"question": "I prefer asking a human expert over an AI chatbot for advice.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
{"question": "I would rather use a human-written article than one generated by an AI chatbot.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
{"question": "I find human interaction more valuable than interacting with an AI chatbot.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
# Willingness to Use LLM
{"question": "I would avoid using an AI chatbot if I had other options.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
{"question": "I am willing to use an AI chatbot for daily tasks (e.g., writing, research).", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
{"question": "I would recommend an AI chatbot to others.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]}
],
"Demographics": [
{"question": "What is your highest level of education?", "options": [
"Less than high school",
"High school diploma",
"Some college",
"Associate's degree",
"Bachelor's degree",
"Master's degree",
"Doctoral degree"
]},
]
}
def create_interface():
with gr.Blocks(gr.themes.Ocean(), title="AI Response Evaluation", css=custom_css) as demo:
# User ID Section (unchanged layout)
with gr.Column(visible=True, elem_id="id_section") as id_section:
with gr.Column(elem_classes="instruction-panel"):
gr.Markdown(INSTRUCTION)
gr.Markdown("---")
gr.Markdown("## Prolific ID Verification")
prolific_id = gr.Textbox(label="Enter your Prolific ID")
id_submit_btn = gr.Button("Submit", variant="primary")
id_message = gr.Markdown("", visible=False)
# Main Interface (updated for 28 questions)
with gr.Column(visible=False, elem_id="main_interface") as main_interface:
progress_md = gr.Markdown("**Progress:** 0% (0/28)", elem_classes="progress")
gr.HTML('<style>.prompt-highlight { background-color: #e6f7ff; padding: 10px; border: 1px solid #91d5ff; border-radius: 5px; }</style>')
gr.Markdown(MINI_INSTRUCTION)
gr.Markdown("---")
gr.Markdown("### Current Question From a User")
prompt_box = gr.Markdown(elem_classes="prompt-highlight")
with gr.Row():
with gr.Column(variant="panel"):
gr.Markdown("### Response A")
response_a = gr.Markdown(height='200px')
with gr.Column(variant="panel"):
gr.Markdown("### Response B")
response_b = gr.Markdown(height='200px')
selection_radio = gr.Radio(
choices=[("Response A", "A"), ("Response B", "B")],
label="Select the better response",
)
feedback = gr.Textbox(label="Additional Feedback (optional)", lines=1)
confidence = gr.Radio(
choices=[("1 - Not confident", 1), ("2", 2), ("3", 3), ("4", 4), ("5 - Very confident", 5)],
label="Confidence Rating",
)
with gr.Row():
prev_btn = gr.Button("Previous", variant="secondary")
next_btn = gr.Button("Next", variant="primary")
# New Forms Section
with gr.Column(visible=False, elem_id="forms_section") as forms_section:
gr.Markdown("## Pre-Test Questions")
gr.Markdown("Please answer the following questions to complete the study.")
form_radios = []
for form_name, questions in forms_questions.items():
for q in questions:
radio = gr.Radio(choices=q["options"], label=q["question"])
form_radios.append(radio)
with gr.Row():
back_to_questions_btn = gr.Button("Back to Questions", variant="secondary")
submit_forms_btn = gr.Button("Submit Forms", variant="primary")
# Completion Section (unchanged layout)
with gr.Column(visible=False, elem_id="completion") as completion_section:
gr.Markdown("# Thank You!")
gr.Markdown("### Completion code: `CA7IOI65`")
completion_md = gr.Markdown("Your annotations and form responses have been saved.")
gr.HTML("""
<p>Click <a href="https://app.prolific.com/researcher/submissions/complete?cc=CA7IOI65" target="_blank">here</a> to complete the task.</p>
""")
# Updated handle_id_submit to assign 28 random questions
def handle_id_submit(prolific_id_val):
if not prolific_id_val.strip():
raise gr.Error("Please enter a valid Prolific ID")
prolific_id = prolific_id_val.strip()
assigned = load_assigned()
if prolific_id in assigned:
assignment_key = assigned[prolific_id]
else:
next_key = get_next_available_assignment(assigned)
if next_key is None:
return {
id_section: gr.update(visible=True),
forms_section: gr.update(visible=False),
main_interface: gr.update(visible=False),
completion_section: gr.update(visible=False),
id_message: gr.update(value="The study is full. Thank you for your interest.", visible=True)
}
assigned[prolific_id] = next_key
save_assigned(assigned)
assignment_key = next_key
state.prolific_id = prolific_id
state.assignment_key = assignment_key
state.selected_indices = assignments[assignment_key]
data = load_latest_data(prolific_id)
if data:
if not state.forms_completed:
return {
id_section: gr.update(visible=False),
forms_section: gr.update(visible=True),
main_interface: gr.update(visible=False),
completion_section: gr.update(visible=False),
id_message: gr.update(value="", visible=False)
}
elif state.current_idx < 28:
return {
id_section: gr.update(visible=False),
forms_section: gr.update(visible=False),
main_interface: gr.update(visible=True),
completion_section: gr.update(visible=False),
id_message: gr.update(value="", visible=False),
**update_interface(state.current_idx)
}
else:
return {
id_section: gr.update(visible=False),
forms_section: gr.update(visible=False),
main_interface: gr.update(visible=False),
completion_section: gr.update(visible=True),
id_message: gr.update(value="", visible=False)
}
else:
state.annotations = [None] * 28
state.current_idx = 0
state.forms_completed = False
state.form_responses = {}
return {
id_section: gr.update(visible=False),
forms_section: gr.update(visible=True),
main_interface: gr.update(visible=False),
completion_section: gr.update(visible=False),
id_message: gr.update(value="", visible=False)
}
# Updated update_interface to use selected_indices
def update_interface(current_idx):
if current_idx >= 28:
current_idx = 27
actual_idx = state.selected_indices[current_idx]
current_data = response_pairs[actual_idx]
progress = f"**Progress:** {current_idx/28:.0%} ({min(current_idx, 28)}/28)"
annotation = state.annotations[current_idx] if current_idx < len(state.annotations) else None
return {
prompt_box: current_data.get("prompt", ""),
response_a: current_data.get("responseA", ""),
response_b: current_data.get("responseB", ""),
progress_md: progress,
feedback: annotation["feedback"] if annotation else "",
confidence: annotation["confidence"] if annotation else None,
selection_radio: annotation["selected"] if annotation else None
}
# Updated handle_navigation to transition to forms_section after 28 questions
def handle_navigation(direction, selection, confidence_val, feedback_val):
error_msg = None
if direction == "next":
if not selection:
error_msg = "Please select a response before proceeding."
if not confidence_val:
error_msg = "Please select a confidence level before proceeding."
if error_msg:
gr.Warning(error_msg)
return {
main_interface: gr.update(visible=True),
completion_section: gr.update(visible=False),
**update_interface(state.current_idx)
}
if selection and confidence_val:
actual_idx = state.selected_indices[state.current_idx]
annotation = {
"id": response_pairs[actual_idx]["id"],
"prompt": response_pairs[actual_idx]["prompt"],
"selected": selection,
"confidence": confidence_val,
"feedback": feedback_val,
"timestamp": datetime.now().isoformat()
}
state.annotations[state.current_idx] = annotation
if direction == "next":
new_idx = min(state.current_idx + 1, 28)
else:
new_idx = max(0, state.current_idx - 1)
state.current_idx = new_idx
save_annotations()
if new_idx >= 28:
return {
main_interface: gr.update(visible=False),
completion_section: gr.update(visible=True),
**update_interface(27)
}
else:
return {
main_interface: gr.update(visible=True),
completion_section: gr.update(visible=False),
**update_interface(new_idx)
}
# New function to handle returning to questions from forms
def handle_back_to_questions():
state.current_idx = 27
save_annotations()
return {
main_interface: gr.update(visible=True),
forms_section: gr.update(visible=False),
completion_section: gr.update(visible=False),
**update_interface(27)
}
# New function to handle form submission
def handle_forms_submit(*form_inputs):
if any(input_val is None for input_val in form_inputs):
gr.Warning("Please answer all questions before proceeding.")
return {
forms_section: gr.update(visible=True),
main_interface: gr.update(visible=False),
completion_section: gr.update(visible=False)
}
state.form_responses = {}
idx = 0
for form_name, questions in forms_questions.items():
for q in questions:
key = f"{form_name}_{q['question']}"
state.form_responses[key] = form_inputs[idx]
idx += 1
state.forms_completed = True
save_annotations()
state.current_idx = 0
return {
forms_section: gr.update(visible=False),
main_interface: gr.update(visible=True),
completion_section: gr.update(visible=False),
**update_interface(0)
}
# Event bindings
id_submit_btn.click(
handle_id_submit,
inputs=prolific_id,
outputs=[id_section, forms_section, main_interface, completion_section, id_message, prompt_box,
response_a, response_b, progress_md, feedback, confidence, selection_radio]
)
prev_btn.click(
handle_navigation,
inputs=[gr.State("prev"), selection_radio, confidence, feedback],
outputs=[main_interface, completion_section, prompt_box, response_a,
response_b, progress_md, feedback, confidence, selection_radio]
)
next_btn.click(
handle_navigation,
inputs=[gr.State("next"), selection_radio, confidence, feedback],
outputs=[main_interface, completion_section, prompt_box, response_a,
response_b, progress_md, feedback, confidence, selection_radio]
)
back_to_questions_btn.click(
handle_back_to_questions,
inputs=[],
outputs=[main_interface, forms_section, completion_section, prompt_box, response_a,
response_b, progress_md, feedback, confidence, selection_radio]
)
submit_forms_btn.click(
handle_forms_submit,
inputs=form_radios,
outputs=[forms_section, main_interface, completion_section, prompt_box, response_a,
response_b, progress_md, feedback, confidence, selection_radio]
)
return demo
if __name__ == "__main__":
if not os.path.exists("assignments.json"):
assignments,_ = generate_assignments()
print("Assignments generated.")
with open("assignments.json", "w") as f:
json.dump(assignments, f, indent=2)
else:
with open("assignments.json", "r") as f:
assignments = json.load(f)
print("Assignments loaded.")
app = create_interface()
app.launch() |