File size: 25,850 Bytes
a044e1e
 
 
 
 
9997d43
a044e1e
9997d43
a044e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
9997d43
a044e1e
 
 
2e6a46f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a044e1e
 
9997d43
 
 
 
 
 
 
 
 
 
 
a044e1e
 
9997d43
a044e1e
 
 
 
2e6a46f
 
9997d43
 
a044e1e
 
 
2e6a46f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a044e1e
9997d43
a044e1e
 
 
 
 
 
 
2e6a46f
9997d43
a044e1e
 
9997d43
 
 
a044e1e
 
 
 
 
 
9997d43
a044e1e
 
 
 
 
 
9997d43
 
 
 
2e6a46f
a044e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
2e6a46f
a044e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9997d43
b2ab1d4
a044e1e
 
 
9997d43
a044e1e
 
 
 
9997d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3fd10
3ce1303
9997d43
 
 
3ce1303
 
 
9997d43
 
3ce1303
 
 
9997d43
 
 
 
 
 
 
 
 
 
 
 
 
 
a044e1e
 
9997d43
a044e1e
 
 
 
 
 
 
2e6a46f
a044e1e
2e6a46f
a044e1e
2e6a46f
a044e1e
 
 
9997d43
a044e1e
 
 
 
 
 
 
 
 
 
 
 
9997d43
a044e1e
 
 
 
 
 
 
 
9997d43
 
6a3fd10
9997d43
 
 
 
 
 
 
 
 
 
 
a044e1e
 
 
9997d43
a044e1e
 
 
 
2e6a46f
a044e1e
 
 
2e6a46f
 
 
 
 
 
 
 
 
 
6a3fd10
2e6a46f
 
 
 
 
 
 
 
 
 
 
a044e1e
6a3fd10
a044e1e
 
6a3fd10
a044e1e
6a3fd10
2e6a46f
a044e1e
6a3fd10
9997d43
 
6a3fd10
 
2e6a46f
6a3fd10
 
9997d43
 
 
 
 
6a3fd10
 
 
9997d43
a044e1e
2e6a46f
a044e1e
6a3fd10
 
9997d43
 
6a3fd10
 
9997d43
6a3fd10
9997d43
 
 
2e6a46f
6a3fd10
9997d43
 
2e6a46f
9997d43
a044e1e
 
 
 
 
 
 
 
 
 
2e6a46f
a044e1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9997d43
a044e1e
9997d43
 
a044e1e
 
 
 
 
9997d43
 
2e6a46f
9997d43
 
 
 
2e6a46f
a044e1e
9997d43
6a3fd10
 
a044e1e
9997d43
a044e1e
 
 
9997d43
 
 
 
 
2e6a46f
9997d43
 
 
 
 
2e6a46f
9997d43
 
 
 
 
6a3fd10
9997d43
 
6a3fd10
9997d43
a044e1e
9997d43
 
 
 
6a3fd10
9997d43
 
 
 
6a3fd10
9997d43
 
6a3fd10
 
 
9997d43
a044e1e
 
 
 
 
6a3fd10
9997d43
a044e1e
 
 
 
 
6a3fd10
9997d43
a044e1e
 
 
 
 
6a3fd10
9997d43
 
 
 
 
 
 
 
 
 
 
 
 
6a3fd10
 
a044e1e
 
 
 
 
2e6a46f
 
 
 
 
 
 
 
 
a044e1e
9997d43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import gradio as gr
import json
from datetime import datetime
import os
import logging
import random

# Logger setup (unchanged)
def _setup_logger():
    log_format = logging.Formatter("[%(asctime)s %(levelname)s] %(message)s")
    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
    console_handler = logging.StreamHandler()
    console_handler.setFormatter(log_format)
    logger.handlers = [console_handler]
    return logger

logger = _setup_logger()

DATA_DIR = "annotations_data2"
os.makedirs(DATA_DIR, exist_ok=True)

# Load questions from JSON (unchanged)
with open("test_pairs2.json", "r") as f:
    response_pairs = json.load(f)

# Function to generate assignments ensuring each question gets 7 labels
def generate_assignments(num_questions=120, num_annotators=30, labels_per_question=7, questions_per_annotator=28):
    assignments = {f"annotator_{i+1}": [] for i in range(num_annotators)}
    question_assignments = {i: [] for i in range(num_questions)}
    annotator_capacities = [questions_per_annotator] * num_annotators

    for q in range(num_questions):
        available_annotators = [(a, annotator_capacities[a]) for a in range(num_annotators) if annotator_capacities[a] > 0]
        if len(available_annotators) < labels_per_question:
            raise ValueError(f"Not enough annotators with capacity for question {q}")
        
        available_annotators.sort(key=lambda x: x[1], reverse=True)
        selected_annotators = [a for a, _ in available_annotators[:labels_per_question]]
        
        for a in selected_annotators:
            assignments[f"annotator_{a+1}"].append(q)
            question_assignments[q].append(a)
            annotator_capacities[a] -= 1

    return assignments, question_assignments

custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;500;700&display=swap');
body { font-family: 'Roboto', sans-serif !important; line-height: 1.6; }
.panel { border: 1px solid #e5e7eb !important; border-radius: 12px !important; padding: 20px !important; }
button { font-weight: 500 !important; transition: all 0.2s ease !important; font-family: 'Roboto', sans-serif !important; }
button:hover { transform: translateY(-1px); }
.progress { color: #4f46e5; font-weight: 500; }
textarea { border-radius: 8px !important; padding: 12px !important; font-family: 'Roboto', sans-serif !important; }
.selected-response { border: 2px solid #4f46e5 !important; background-color: #f5f3ff; }
.instruction-panel { background: #f8f9fa !important; border: 1px solid #e0e0e0 !important; border-radius: 12px !important; padding: 25px !important; margin-bottom: 25px !important; }
.criteria-list { margin-left: 20px !important; list-style-type: none !important; }
.criteria-item { padding: 8px 0 !important; }
.highlight { color: #4f46e5; font-weight: 500; }
"""

# Updated State class to include selected_indices, form_responses, and forms_completed
class State:
    def __init__(self):
        self.current_idx = 0
        self.prolific_id = ""
        self.selected_indices = []  # List of 28 question indices for this user
        self.annotations = []       # Annotations for the 28 questions
        self.form_responses = {}    # Responses to post-test forms
        self.forms_completed = False  # Flag for form completion
        self.start_time = datetime.now()

state = State()
ASSIGNED_FILE = "assigned.json"

def load_assigned():
    if os.path.exists(ASSIGNED_FILE):
        with open(ASSIGNED_FILE, "r") as f:
            return json.load(f)
    return {}

def save_assigned(assigned):
    with open(ASSIGNED_FILE, "w") as f:
        json.dump(assigned, f, indent=2)

def get_next_available_assignment(assigned, total_assignments=30):
    for i in range(1, total_assignments + 1):
        key = f"annotator_{i}"
        if key not in assigned.values():
            return key
    return None

# Updated save_annotations to include new fields
def save_annotations():
    if not state.prolific_id:
        return
    filename = f"{state.prolific_id}_latest.json"
    filepath = os.path.join(DATA_DIR, filename)
    data = {
        "prolific_id": state.prolific_id,
        "assignment_key": state.assignment_key,
        "selected_indices": state.selected_indices,
        "duration": (datetime.now() - state.start_time).total_seconds(),
        "current_idx": state.current_idx,
        "annotations": state.annotations,
        "form_responses": state.form_responses,
        "forms_completed": state.forms_completed
    }
    with open(filepath, "w") as f:
        json.dump(data, f, indent=2)
    logger.info(f"Saved annotations to {filepath}")
    return filepath

# Updated load_latest_data to load new fields
def load_latest_data(prolific_id):
    filename = f"{prolific_id}_latest.json"
    filepath = os.path.join(DATA_DIR, filename)
    if os.path.exists(filepath):
        try:
            data = json.load(open(filepath))
            state.selected_indices = data.get("selected_indices", [])
            state.annotations = data.get("annotations", [])
            state.form_responses = data.get("form_responses", {})
            state.forms_completed = data.get("forms_completed", False)
            state.current_idx = min(max(data.get("current_idx", 0), 0), 27)
            return data
        except Exception as e:
            logger.error(f"Error loading {filepath}: {e}")
    return None

INSTRUCTION = """
### Welcome! 🎉

In this task, you'll act as a judge comparing two AI chatbot responses. Your goal is to determine which response is better based on specific criteria.

### 📋 Task Overview:
- You'll evaluate multiple questions (prompts), each with two responses (Response A and B)
- Select the better response for each question based on the criteria below
- Your progress will be tracked
- After completing all questions, you'll answer a few post-test forms

### 🏅 Evaluation Criteria:
1. **Perceived Usefulness**  
   → Does the answer address the question effectively and provide relevant information?
2. **Social Presence**  
   → Does the answer creates "the feeling of being there with a 'real' person"?


### 🚀 Getting Started:
1. Input your Prolific ID to begin
2. Read the question carefully
3. Compare both responses side-by-side
4. Select the better response using the radio buttons
5. Provide optional feedback and confidence rating
6. Click "Next" to continue or "Previous" to review

**Note:** You need select a response and confidence level before proceeding to the next question.

*Thank you for contributing to our research! Your input is valuable.*  
"""

MINI_INSTRUCTION = """You’ll compare two AI chatbot answers for different questions and pick the better one. Read the question, then look at Response A and Response B. Choose the one that’s better based on: Perceived Usefulness (answers well, gives useful info), and Social Presence (understands feelings, fits the situation).

*Select your choice and rate your confidence. Click "Next" to move on or "Previous" to go back. You must pick a response and confidence level to continue. Thanks for helping with our research!*
"""

# Define post-test form questions (placeholders; replace with actual questions if available)
forms_questions = {
    "Neuro-QoL Cognition Function": [
        {"question": "In the past 7 days, I had to read something several times to understand it.", "options": ["Never", "Rarely", "Sometimes", "Often", "Very Often"]},
        {"question": "In the past 7 days, I had to work really hard to pay attention or I would make a mistake.", "options": ["Never", "Rarely", "Sometimes", "Often", "Very Often"]},
        {"question": "In the past 7 days, I had trouble concentrating.", "options": ["Never", "Rarely", "Sometimes", "Often", "Very Often"]},
        {"question": "In the past 7 days, I had trouble remembering things.", "options": ["Never", "Rarely", "Sometimes", "Often", "Very Often"]}
    ],
    "Wong and Law Emotional Intelligence Scale (WLEIS)": [
        # // SEA
        {"question": "I have a good sense of why I have certain feelings most of the time.", "options": ["Strongly Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree"]},
        {"question": "I have good understanding of my own emotions.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        {"question": "I really understand what I feel.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        {"question": "I always know whether I am happy or not.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        # // OEA
        {"question": "I always know my friends’ emotions from their behavior.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        {"question": "I am a good observer of others’ emotions.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        {"question": "I am sensitive to the feelings and emotions of others.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        {"question": "I have good understanding of the emotions of people around me.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        # // UOE
        {"question": "I always set goals for myself and then try my best to achieve them.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        {"question": "I always tell myself I am a competent person.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        {"question": "I am a self-motivated person.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        {"question": "I would always encourage myself to try my best.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        # ROE
        {"question": "I am able to control my temper and handle difficulties rationally.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        {"question": "I can always calm down quickly when I am very angry.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        {"question": "I have good control of my own emotions.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        {"question": "I can always stay calm in stressful situations.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]}
    ],
    "Algorithmic Aversion": [
        # Trust in LLM
        {"question": "I trust the answers provided by AI chatbots (e.g., ChatGPT) to be accurate.", "options": ["Strongly Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree"]},
        {"question": "I feel confident relying on an AI chatbot for important tasks.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        {"question": "I worry that AI chatbots might give me incorrect information.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},

        # Preference for Human vs. LLM
        {"question": "I prefer asking a human expert over an AI chatbot for advice.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        {"question": "I would rather use a human-written article than one generated by an AI chatbot.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        {"question": "I find human interaction more valuable than interacting with an AI chatbot.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},

        # Willingness to Use LLM
        {"question": "I would avoid using an AI chatbot if I had other options.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        {"question": "I am willing to use an AI chatbot for daily tasks (e.g., writing, research).", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]},
        {"question": "I would recommend an AI chatbot to others.", "options": ["Strongly Disagree", "Disagree", "Neutral", " Agree", "Strongly Agree"]}
    ],
    "Demographics": [
        {"question": "What is your highest level of education?", "options": [
            "Less than high school", 
            "High school diploma", 
            "Some college", 
            "Associate's degree", 
            "Bachelor's degree", 
            "Master's degree", 
            "Doctoral degree"
        ]},
    ]
}

def create_interface():
    with gr.Blocks(gr.themes.Ocean(), title="AI Response Evaluation", css=custom_css) as demo:
        # User ID Section (unchanged layout)
        with gr.Column(visible=True, elem_id="id_section") as id_section:
            with gr.Column(elem_classes="instruction-panel"):
                gr.Markdown(INSTRUCTION)
            gr.Markdown("---")
            gr.Markdown("## Prolific ID Verification")
            prolific_id = gr.Textbox(label="Enter your Prolific ID")
            id_submit_btn = gr.Button("Submit", variant="primary")
            id_message = gr.Markdown("", visible=False)

        # Main Interface (updated for 28 questions)
        with gr.Column(visible=False, elem_id="main_interface") as main_interface:
            progress_md = gr.Markdown("**Progress:** 0% (0/28)", elem_classes="progress")
            gr.HTML('<style>.prompt-highlight { background-color: #e6f7ff; padding: 10px; border: 1px solid #91d5ff; border-radius: 5px; }</style>')
            gr.Markdown(MINI_INSTRUCTION)
            gr.Markdown("---")
            gr.Markdown("### Current Question From a User")
            prompt_box = gr.Markdown(elem_classes="prompt-highlight")
            with gr.Row():
                with gr.Column(variant="panel"):
                    gr.Markdown("### Response A")
                    response_a = gr.Markdown(height='200px')
                with gr.Column(variant="panel"):
                    gr.Markdown("### Response B")
                    response_b = gr.Markdown(height='200px')
            selection_radio = gr.Radio(
                choices=[("Response A", "A"), ("Response B", "B")],
                label="Select the better response",
            )
            feedback = gr.Textbox(label="Additional Feedback (optional)", lines=1)
            confidence = gr.Radio(
                choices=[("1 - Not confident", 1), ("2", 2), ("3", 3), ("4", 4), ("5 - Very confident", 5)],
                label="Confidence Rating",
            )
            with gr.Row():
                prev_btn = gr.Button("Previous", variant="secondary")
                next_btn = gr.Button("Next", variant="primary")

        # New Forms Section
        with gr.Column(visible=False, elem_id="forms_section") as forms_section:
            gr.Markdown("## Pre-Test Questions")
            gr.Markdown("Please answer the following questions to complete the study.")
            form_radios = []
            for form_name, questions in forms_questions.items():
                for q in questions:
                    radio = gr.Radio(choices=q["options"], label=q["question"])
                    form_radios.append(radio)
            with gr.Row():
                back_to_questions_btn = gr.Button("Back to Questions", variant="secondary")
                submit_forms_btn = gr.Button("Submit Forms", variant="primary")

        # Completion Section (unchanged layout)
        with gr.Column(visible=False, elem_id="completion") as completion_section:
            gr.Markdown("# Thank You!")
            gr.Markdown("### Completion code: `CA7IOI65`")
            completion_md = gr.Markdown("Your annotations and form responses have been saved.")
            gr.HTML("""
                <p>Click <a href="https://app.prolific.com/researcher/submissions/complete?cc=CA7IOI65" target="_blank">here</a> to complete the task.</p>
            """)

        # Updated handle_id_submit to assign 28 random questions
        def handle_id_submit(prolific_id_val):
            if not prolific_id_val.strip():
                raise gr.Error("Please enter a valid Prolific ID")
            prolific_id = prolific_id_val.strip()
            assigned = load_assigned()
            if prolific_id in assigned:
                assignment_key = assigned[prolific_id]
            else:
                next_key = get_next_available_assignment(assigned)
                if next_key is None:
                    return {
                        id_section: gr.update(visible=True),
                        forms_section: gr.update(visible=False),
                        main_interface: gr.update(visible=False),
                        completion_section: gr.update(visible=False),
                        id_message: gr.update(value="The study is full. Thank you for your interest.", visible=True)
                    }
                assigned[prolific_id] = next_key
                save_assigned(assigned)
                assignment_key = next_key

            state.prolific_id = prolific_id
            state.assignment_key = assignment_key
            state.selected_indices = assignments[assignment_key]
            data = load_latest_data(prolific_id)
            if data:
                if not state.forms_completed:
                    return {
                        id_section: gr.update(visible=False),
                        forms_section: gr.update(visible=True),
                        main_interface: gr.update(visible=False),
                        completion_section: gr.update(visible=False),
                        id_message: gr.update(value="", visible=False)
                    }
                elif state.current_idx < 28:
                    return {
                        id_section: gr.update(visible=False),
                        forms_section: gr.update(visible=False),
                        main_interface: gr.update(visible=True),
                        completion_section: gr.update(visible=False),
                        id_message: gr.update(value="", visible=False),
                        **update_interface(state.current_idx)
                    }
                else:
                    return {
                        id_section: gr.update(visible=False),
                        forms_section: gr.update(visible=False),
                        main_interface: gr.update(visible=False),
                        completion_section: gr.update(visible=True),
                        id_message: gr.update(value="", visible=False)
                    }
            else:
                state.annotations = [None] * 28
                state.current_idx = 0
                state.forms_completed = False
                state.form_responses = {}
                return {
                    id_section: gr.update(visible=False),
                    forms_section: gr.update(visible=True),
                    main_interface: gr.update(visible=False),
                    completion_section: gr.update(visible=False),
                    id_message: gr.update(value="", visible=False)
                }
        # Updated update_interface to use selected_indices
        def update_interface(current_idx):
            if current_idx >= 28:
                current_idx = 27
            actual_idx = state.selected_indices[current_idx]
            current_data = response_pairs[actual_idx]
            progress = f"**Progress:** {current_idx/28:.0%} ({min(current_idx, 28)}/28)"
            annotation = state.annotations[current_idx] if current_idx < len(state.annotations) else None
            return {
                prompt_box: current_data.get("prompt", ""),
                response_a: current_data.get("responseA", ""),
                response_b: current_data.get("responseB", ""),
                progress_md: progress,
                feedback: annotation["feedback"] if annotation else "",
                confidence: annotation["confidence"] if annotation else None,
                selection_radio: annotation["selected"] if annotation else None
            }

        # Updated handle_navigation to transition to forms_section after 28 questions
        def handle_navigation(direction, selection, confidence_val, feedback_val):
            error_msg = None
            if direction == "next":
                if not selection:
                    error_msg = "Please select a response before proceeding."
                if not confidence_val:
                    error_msg = "Please select a confidence level before proceeding."
            if error_msg:
                gr.Warning(error_msg)
                return {
                    main_interface: gr.update(visible=True),
                    completion_section: gr.update(visible=False),
                    **update_interface(state.current_idx)
                }
            if selection and confidence_val:
                actual_idx = state.selected_indices[state.current_idx]
                annotation = {
                    "id": response_pairs[actual_idx]["id"],
                    "prompt": response_pairs[actual_idx]["prompt"],
                    "selected": selection,
                    "confidence": confidence_val,
                    "feedback": feedback_val,
                    "timestamp": datetime.now().isoformat()
                }
                state.annotations[state.current_idx] = annotation
            if direction == "next":
                new_idx = min(state.current_idx + 1, 28)
            else:
                new_idx = max(0, state.current_idx - 1)
            state.current_idx = new_idx
            save_annotations()
            if new_idx >= 28:
                return {
                    main_interface: gr.update(visible=False),
                    completion_section: gr.update(visible=True),
                    **update_interface(27)
                }
            else:
                return {
                    main_interface: gr.update(visible=True),
                    completion_section: gr.update(visible=False),
                    **update_interface(new_idx)
                }

        # New function to handle returning to questions from forms
        def handle_back_to_questions():
            state.current_idx = 27
            save_annotations()
            return {
                main_interface: gr.update(visible=True),
                forms_section: gr.update(visible=False),
                completion_section: gr.update(visible=False),
                **update_interface(27)
            }

        # New function to handle form submission
        def handle_forms_submit(*form_inputs):
            if any(input_val is None for input_val in form_inputs):
                gr.Warning("Please answer all questions before proceeding.")
                return {
                    forms_section: gr.update(visible=True),
                    main_interface: gr.update(visible=False),
                    completion_section: gr.update(visible=False)
                }
            state.form_responses = {}
            idx = 0
            for form_name, questions in forms_questions.items():
                for q in questions:
                    key = f"{form_name}_{q['question']}"
                    state.form_responses[key] = form_inputs[idx]
                    idx += 1
            state.forms_completed = True
            save_annotations()
            state.current_idx = 0
            return {
                forms_section: gr.update(visible=False),
                main_interface: gr.update(visible=True),
                completion_section: gr.update(visible=False),
                **update_interface(0)
            }

        # Event bindings
        id_submit_btn.click(
            handle_id_submit,
            inputs=prolific_id,
            outputs=[id_section, forms_section, main_interface, completion_section, id_message, prompt_box, 
                     response_a, response_b, progress_md, feedback, confidence, selection_radio]
        )

        prev_btn.click(
            handle_navigation,
            inputs=[gr.State("prev"), selection_radio, confidence, feedback],
            outputs=[main_interface, completion_section, prompt_box, response_a, 
                     response_b, progress_md, feedback, confidence, selection_radio]
        )

        next_btn.click(
            handle_navigation,
            inputs=[gr.State("next"), selection_radio, confidence, feedback],
            outputs=[main_interface, completion_section, prompt_box, response_a,
                     response_b, progress_md, feedback, confidence, selection_radio]
        )

        back_to_questions_btn.click(
            handle_back_to_questions,
            inputs=[],
            outputs=[main_interface, forms_section, completion_section, prompt_box, response_a, 
                     response_b, progress_md, feedback, confidence, selection_radio]
        )

        submit_forms_btn.click(
            handle_forms_submit,
            inputs=form_radios,
            outputs=[forms_section, main_interface, completion_section, prompt_box, response_a, 
                     response_b, progress_md, feedback, confidence, selection_radio]
        )

    return demo

if __name__ == "__main__":
    if not os.path.exists("assignments.json"):
        assignments,_ = generate_assignments()
        print("Assignments generated.")
        with open("assignments.json", "w") as f:
            json.dump(assignments, f, indent=2)
    else:
        with open("assignments.json", "r") as f:
            assignments = json.load(f)
        print("Assignments loaded.")
    app = create_interface()
    app.launch()