Spaces:
Sleeping
Sleeping
File size: 12,727 Bytes
a044e1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import gradio as gr
import json
from datetime import datetime
import os
import logging
def _setup_logger():
log_format = logging.Formatter("[%(asctime)s %(levelname)s] %(message)s")
logger = logging.getLogger()
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
console_handler.setFormatter(log_format)
logger.handlers = [console_handler]
return logger
logger = _setup_logger()
DATA_DIR = "annotations_data2"
os.makedirs(DATA_DIR, exist_ok=True)
with open("test_pairs2.json", "r") as f:
response_pairs = json.load(f)
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@300;400;500;700&display=swap');
body {
font-family: 'Roboto', sans-serif !important;
line-height: 1.6;
}
.panel {
border: 1px solid #e5e7eb !important;
border-radius: 12px !important;
padding: 20px !important;
}
button {
font-weight: 500 !important;
transition: all 0.2s ease !important;
font-family: 'Roboto', sans-serif !important;
}
button:hover {
transform: translateY(-1px);
}
.progress {
color: #4f46e5;
font-weight: 500;
}
textarea {
border-radius: 8px !important;
padding: 12px !important;
font-family: 'Roboto', sans-serif !important;
}
.selected-response {
border: 2px solid #4f46e5 !important;
background-color: #f5f3ff;
}
.instruction-panel {
background: #f8f9fa !important;
border: 1px solid #e0e0e0 !important;
border-radius: 12px !important;
padding: 25px !important;
margin-bottom: 25px !important;
}
.criteria-list {
margin-left: 20px !important;
list-style-type: none !important;
}
.criteria-item {
padding: 8px 0 !important;
}
.highlight {
color: #4f46e5;
font-weight: 500;
}
"""
class State:
def __init__(self):
self.current_idx = 0
self.prolific_id = ""
self.annotations = []
self.start_time = datetime.now()
state = State()
def save_annotations():
if not state.prolific_id:
return
filename = f"{state.prolific_id}_latest.json"
filepath = os.path.join(DATA_DIR, filename)
data = {
"prolific_id": state.prolific_id,
"duration": (datetime.now() - state.start_time).total_seconds(),
"current_idx": state.current_idx,
"annotations": state.annotations
}
with open(filepath, "w") as f:
json.dump(data, f, indent=2)
logger.info(f"Saved annotations to {filepath}")
return filepath
def load_latest_data(prolific_id):
filename = f"{prolific_id}_latest.json"
filepath = os.path.join(DATA_DIR, filename)
if os.path.exists(filepath):
try:
data = json.load(open(filepath))
data["current_idx"] = min(max(data["current_idx"], 0), len(response_pairs)-1)
return data
except Exception as e:
logger.error(f"Error loading {filepath}: {e}")
return None
INSTRUCTION = """
### Welcome! π
In this task, you'll act as a judge comparing two AI chatbot responses. Your goal is to determine which response is better based on specific criteria.
### π Task Overview:
- You'll evaluate multiple questions (prompts), each with two responses (Response A and B)
- Select the better response for each question based on the criteria below
- Your progress will be tracked
### π
Evaluation Criteria:
1. **Perceived Usefulness**
β Does the answer address the question effectively and provide relevant information?
2. **Social Presence**
β Does the answer creates "the feeling of being there with a 'real' person"?
### π Getting Started:
1. Input your Prolific ID to begin
2. Read the question carefully
3. Compare both responses side-by-side
4. Select the better response using the radio buttons
5. Provide optional feedback and confidence rating
6. Click "Next" to continue or "Previous" to review
**Note:** You must select a response and confidence level before proceeding to the next question.
*Thank you for contributing to our research! Your input is valuable.*
"""
MINI_INSTRUCTION = """Youβll compare two AI chatbot answers for different questions and pick the better one. Read the question, then look at Response A and Response B. Choose the one thatβs better based on: Helpfulness (answers well, gives useful info), Clarity (clear, logical, on topic), and Emotion (understands feelings, fits the situation).
*Select your choice and rate your confidence. Click "Next" to move on or "Previous" to go back. You must pick a response and confidence level to continue. Thanks for helping with our research!*
"""
def create_interface():
with gr.Blocks(gr.themes.Ocean(), title="AI Response Evaluation", css=custom_css) as demo:
# User ID Section
with gr.Column(visible=True, elem_id="id_section") as id_section:
with gr.Column(elem_classes="instruction-panel"):
gr.Markdown(INSTRUCTION)
gr.Markdown("---")
gr.Markdown("## Prolific ID Verification")
prolific_id = gr.Textbox(label="Enter your Prolific ID")
id_submit_btn = gr.Button("Submit", variant="primary")
# Main Interface
with gr.Column(visible=False, elem_id="main_interface") as main_interface:
progress_md = gr.Markdown("**Progress:** 0% (0/0)", elem_classes="progress")
gr.HTML('<style>.prompt-highlight { background-color: #e6f7ff; padding: 10px; border: 1px solid #91d5ff; border-radius: 5px; }</style>')
gr.Markdown(MINI_INSTRUCTION)
gr.Markdown("---")
gr.Markdown("### Current Question")
prompt_box = gr.Markdown(elem_classes="prompt-highlight")
with gr.Row():
with gr.Column(variant="panel"):
gr.Markdown("### Response A")
response_a = gr.Markdown(height='200px')
with gr.Column(variant="panel"):
gr.Markdown("### Response B")
response_b = gr.Markdown(height='200px')
selection_radio = gr.Radio(
choices=[("Response A", "A"), ("Response B", "B")],
label="Select the better response",
)
feedback = gr.Textbox(label="Additional Feedback (optional)", lines=3)
confidence = gr.Radio(
choices=[("1 - Not confident", 1), ("2", 2), ("3", 3), ("4", 4), ("5 - Very confident", 5)],
label="Confidence Rating",
)
with gr.Row():
prev_btn = gr.Button("Previous", variant="secondary")
next_btn = gr.Button("Next", variant="primary")
# Completion Section
with gr.Column(visible=False, elem_id="completion") as completion_section:
gr.Markdown("# Thank You!")
gr.Markdown("### Completion code: `CA7IOI65`")
completion_md = gr.Markdown("Your annotations have been saved.")
gr.HTML("""
<p>Click <a href="https://app.prolific.com/researcher/submissions/complete?cc=CA7IOI65" target="_blank">here</a> to complete the task.</p>
""")
def handle_id_submit(prolific_id_val):
if not prolific_id_val.strip():
raise gr.Error("Please enter a valid Prolific ID")
state.prolific_id = prolific_id_val.strip()
data = load_latest_data(state.prolific_id)
if data:
state.annotations = data.get("annotations", [])
state.current_idx = data.get("current_idx", 0)
if state.current_idx >= len(response_pairs):
save_annotations()
return {
id_section: gr.update(visible=False),
main_interface: gr.update(visible=False),
completion_section: gr.update(visible=True)
}
else:
state.annotations = []
state.current_idx = 0
return {
id_section: gr.update(visible=False),
main_interface: gr.update(visible=True),
completion_section: gr.update(visible=False),
**update_interface(state.current_idx)
}
def update_interface(idx):
if idx >= len(response_pairs):
idx = len(response_pairs) - 1
current_data = response_pairs[idx] if idx < len(response_pairs) else {}
progress = f"**Progress:** {idx/len(response_pairs):.0%} ({idx}/{len(response_pairs)})"
annotation = state.annotations[idx] if idx < len(state.annotations) else None
return {
prompt_box: current_data.get("prompt", ""),
response_a: current_data.get("responseA", ""),
response_b: current_data.get("responseB", ""),
progress_md: progress,
feedback: annotation["feedback"] if annotation else "",
confidence: annotation["confidence"] if annotation else None,
selection_radio: annotation["selected"] if annotation else None
}
def handle_navigation(direction, selection, confidence_val, feedback_val):
error_msg = None
if direction == "next":
if not selection:
error_msg = "Please select a response before proceeding."
if not confidence_val:
error_msg = "Please select a confidence level before proceeding."
if error_msg:
gr.Warning(error_msg)
return {
main_interface: gr.update(visible=True),
completion_section: gr.update(visible=False),
**update_interface(state.current_idx)
}
# Save current annotation
if selection and confidence_val:
annotation = {
"id": response_pairs[state.current_idx]["id"], # Save unique ID
"prompt": response_pairs[state.current_idx]["prompt"],
"selected": selection,
"confidence": confidence_val,
"feedback": feedback_val,
"timestamp": datetime.now().isoformat()
}
if state.current_idx < len(state.annotations):
state.annotations[state.current_idx] = annotation
else:
state.annotations.append(annotation)
# Navigation logic
try:
new_idx = state.current_idx + 1 if direction == "next" else max(0, state.current_idx - 1)
state.current_idx = new_idx
save_annotations()
if new_idx >= len(response_pairs):
return {
main_interface: gr.update(visible=False),
completion_section: gr.update(visible=True),
**update_interface(new_idx)
}
return {
main_interface: gr.update(visible=True),
completion_section: gr.update(visible=False),
**update_interface(new_idx)
}
except Exception as e:
logger.error(f"Navigation error: {e}")
return {
main_interface: gr.update(visible=True),
completion_section: gr.update(visible=False),
**update_interface(state.current_idx)
}
# Event bindings
id_submit_btn.click(
handle_id_submit,
inputs=prolific_id,
outputs=[id_section, main_interface, completion_section, prompt_box,
response_a, response_b, progress_md, feedback, confidence, selection_radio]
)
prev_btn.click(
handle_navigation,
inputs=[gr.State("prev"), selection_radio, confidence, feedback],
outputs=[main_interface, completion_section, prompt_box, response_a,
response_b, progress_md, feedback, confidence, selection_radio]
)
next_btn.click(
handle_navigation,
inputs=[gr.State("next"), selection_radio, confidence, feedback],
outputs=[main_interface, completion_section, prompt_box, response_a,
response_b, progress_md, feedback, confidence, selection_radio]
)
return demo
if __name__ == "__main__":
app = create_interface()
app.launch(server_name="0.0.0.0", server_port=7861, share=True)
|