File size: 9,350 Bytes
eaa3d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Suppress annoying warnings from this issue which cannot be solved: https://github.com/joblib/threadpoolctl/blob/master/multiple_openmp.md and transformers packages
import warnings
warnings.filterwarnings("ignore")

import re
import torch
import torch.nn as nn
import traceback
from transformers import BartTokenizer, BartForConditionalGeneration
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import numpy as np
from nltk import sent_tokenize
import logging
import openai
from tqdm import tqdm
from sentence_transformers import SentenceTransformer, util
from openai.error import (APIError, RateLimitError, ServiceUnavailableError,
                          Timeout, APIConnectionError, InvalidRequestError)
from tenacity import (before_sleep_log, retry, retry_if_exception_type,
                      stop_after_delay, wait_random_exponential, stop_after_attempt)
from .utils import break_down2scenes
from .prompt import build_fact_prompt
from .openai_api import openai_api_response


logger = logging.getLogger(__name__)

class OpenAIEmbedding:
    def __init__(self, api_key, model="text-embedding-3-large"):
        self.api_key = api_key
        self.model = model
        openai.api_key = api_key

    @retry(retry=retry_if_exception_type((APIError, Timeout, RateLimitError,
                                      ServiceUnavailableError, APIConnectionError)),
           wait=wait_random_exponential(max=60), stop=stop_after_attempt(10),
           before_sleep=before_sleep_log(logger, logging.WARNING))
    def encode(self, texts, **kwargs):
        if isinstance(texts, str):
            texts = [texts]
        
        try:
            response = openai.Embedding.create(
                model=self.model,
                input=texts,
            )
            
            # Extract embeddings from response
            embeddings = [item["embedding"] for item in response["data"]]
            return np.array(embeddings)
        
        except Exception as e:
            logger.error(f"Embedding API failed: {str(e)}")
            return None

class NarrativeFactScore():
    def __init__(self, model="gpt-4o-mini", split_type="fast", checkpoint=None, api_key=None, model_id="gpt-4"):
        self.sent_model = OpenAIEmbedding(api_key=api_key)
        self.split_type = split_type
        self.checkpoint = checkpoint
        self.api_key = api_key
        self.model_id = model_id
        openai.api_key = api_key
        
        if model == "gptscore":
            self.metric = GPTScore(model=self.model_id, api_key=self.api_key)
            self.metric_function = self.metric.gpt_score
        else:
            raise ValueError("NarrativeFactScore currently only supports GPTScore")

    def get_surrounding_sentences(self, sentence_array, ii):
        if ii > 0 and ii < len(sentence_array) - 1:
            sents = " ".join(np.array(sentence_array)[ii - 1 : ii + 1])
        elif ii == 0:
            sents = " ".join(np.array(sentence_array)[:2])
        elif ii == len(sentence_array) - 1:
            sents = " ".join(np.array(sentence_array)[ii - 1 :])
        return sents

    def group_into_sections(self, sentence_array, num_sent):
        sectioned_sents = []
        for ii in range(0, len(sentence_array), num_sent):
            sectioned_sents.append(" ".join(sentence_array)[ii : ii + num_sent])
        return sectioned_sents
    
    def split_sent(self, text):
        text_list = []
        if self.split_type == "fast":
            for t in text.split('.'):
                if len(t) == 0:
                    continue
                text_list.append(t)
            return text_list
        elif self.split_type == "fast_comma":
            for t in re.split(r'[.,]', text):
                if len(t) == 0:
                    continue
                text_list.append(t)
            return text_list
        elif self.split_type == "gpt":
            prompt = build_fact_prompt(
                prompt_template = './templates/atomic_fact.txt',
                input_text_list=[text],
            )
            response = openai_api_response(prompt, model=self.model_id, api_key=self.api_key)
            text_list = []
            for res in response.split('\n'):
                text_list.append(res.strip())
            return text_list
        else:
            return None

    def score_src_hyp_long(self, srcs, hyps, kgs):
        all_scores = []
        all_scores_per_sent = []
        all_relevant_scenes = []
        all_summary_chunks = []
        all_feedback_list = []
        # src is a list containing source documents.
        # hyps is a list containing predicted documents
        total_score = 0
        for global_idx, (src, hyp) in enumerate(zip(tqdm(srcs), hyps)):
            src_sents = break_down2scenes(src)
            # Get embeddings using OpenAI API
            sentence_embeddings_src = self.sent_model.encode(src_sents)
            sentence_embeddings_kg = self.sent_model.encode(kgs)
            
            doc_scores = []
            relevant_scenes = []
            feedbacks = []
            hyp_array = self.split_sent(hyp)
            for idx, hyp_sentence in enumerate(hyp_array):
                # Get embedding for hypothesis sentence
                sentence_embeddings_hyp = self.sent_model.encode(hyp_sentence)
                
                # Calculate cosine similarity
                scores = util.cos_sim(sentence_embeddings_hyp, sentence_embeddings_src)[0]
                scores_kg = util.cos_sim(sentence_embeddings_hyp, sentence_embeddings_kg)[0]
                
                sorted_idxs = np.argsort(-1 * scores) # descending order
                sorted_idxs_kg = np.argsort(-1 * scores_kg) # descending order
                similar_src_sentences = []
                similar_src_sentences_kg = []
                triple = ''
                
                for sorted_idx, ii in enumerate(sorted_idxs_kg[0:1]):
                    if sorted_idx == 0:
                        triple += f'{kgs[ii]}'
                    else:
                        triple += f', {kgs[ii]}'
                for ii in sorted_idxs[0:1]:
                    similar_sents = src_sents[ii]
                    similar_src_sentences.append(similar_sents)
                
                scores, feedback_list = self.metric_function(similar_src_sentences, [hyp_sentence for i in range(0, len(similar_src_sentences))], triple)
                score = np.max(scores)
                max_scene_idx = np.argmax(scores)
                max_scene = similar_src_sentences[max_scene_idx]
                feedback = feedback_list[max_scene_idx]
                
                doc_scores.append(int(score))
                relevant_scenes.append(max_scene)
                feedbacks.append(feedback)

            doc_score = np.mean(doc_scores)
            all_scores_per_sent.append(doc_scores)
            all_scores.append(doc_score)
            all_relevant_scenes.append(relevant_scenes)
            all_summary_chunks.append(hyp_array)
            all_feedback_list.append(feedbacks)
            total_score += doc_score
            if global_idx % 100 == 99:
                print(f"Document mean {global_idx+1} Score: {total_score/(global_idx+1)} Score")
        return all_scores, all_scores_per_sent, all_relevant_scenes, all_summary_chunks, all_feedback_list

class GPTScore():
    def __init__(self, model="gpt-4o", api_key=None, prompt='./templates/fact_score_kg.txt'):
        self.max_length = 1024
        self.model = model
        self.api_key = api_key
        self.prompt = prompt
        openai.api_key = api_key
    
    @retry(retry=retry_if_exception_type((APIError, Timeout, RateLimitError,
                                        ServiceUnavailableError, APIConnectionError, InvalidRequestError)),
        wait=wait_random_exponential(max=60), stop=stop_after_attempt(10),
        before_sleep=before_sleep_log(logger, logging.WARNING))
    def gpt_inference(self, prompt):
        prompt_messages = [{"role": "user", "content": prompt}]
        try:
            response = openai.ChatCompletion.create(
                model=self.model,
                messages=prompt_messages,
                temperature=0,
                api_key=self.api_key
            )
            response = response.choices[0].message.content
        except InvalidRequestError:
            response = 1
        return response

    def gpt_score(self, srcs, tgts, kgs, batch_size=4):
        score_list = []
        feedback_list = []

        for i in range(len(srcs)):
            src = srcs[i]
            tgt = tgts[i]

            prompt = build_fact_prompt(
                prompt_template=self.prompt,
                input_text_list=[src, kgs, tgt],
            )
            
            try:
                score = self.gpt_inference(prompt)
                if '1' in score:
                    score_list.append(float(1))
                    feedback_list.append('')
                else:
                    score_list.append(float(0))
                    feedback_list.append(score)
            
            except RuntimeError:
                traceback.print_exc()
                print(f"source: {src_list}")
                print(f"target: {tgt_list}")
                exit(0)
                
        return score_list, feedback_list