Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
import copy | |
import random | |
from torch.utils.data import Dataset | |
from videomind.utils.parser import parse_span | |
class AnsweringDataset(Dataset): | |
def __init__(self, processor, model_args, data_args, training_args): | |
super(AnsweringDataset, self).__init__() | |
raw_annos = self.load_annos() | |
annos = [] | |
for anno in raw_annos: | |
num_words = len(anno['question'].split(' ')) + len(anno['answer'].split(' ')) | |
if data_args.min_num_words >= 0 and num_words < data_args.min_num_words: | |
continue | |
if data_args.max_num_words >= 0 and num_words > data_args.max_num_words: | |
continue | |
if data_args.min_video_len >= 0 and anno.get('duration', float('inf')) < data_args.min_video_len: | |
continue | |
if data_args.max_video_len >= 0 and anno.get('duration', 0) > data_args.max_video_len: | |
continue | |
annos.append(anno) | |
self.annos = annos | |
self.raw_length = len(raw_annos) | |
self.processor = processor | |
self.model_args = model_args | |
self.data_args = data_args | |
self.training_args = training_args | |
def __len__(self): | |
return len(self.annos) | |
def __getitem__(self, idx): | |
anno = copy.deepcopy(self.annos[idx]) | |
video_path, question, answer = anno['video_path'], anno['question'], anno['answer'] | |
messages = [{ | |
'role': | |
'user', | |
'content': [{ | |
'type': 'video', | |
'video': video_path, | |
'min_pixels': 128 * 28 * 28, | |
'max_pixels': 256 * 28 * 28, | |
'max_frames': 32, | |
'fps': 2.0 | |
}, { | |
'type': 'text', | |
'text': question | |
}] | |
}, { | |
'role': 'assistant', | |
'content': answer | |
}] | |
meta = dict(messages=messages) | |
return meta | |
class AnsweringCropDataset(AnsweringDataset): | |
def __getitem__(self, idx): | |
anno = copy.deepcopy(self.annos[idx]) | |
video_path, question, answer = anno['video_path'], anno['question'], anno['answer'] | |
if anno.get('no_aug'): | |
s, e = anno['span'][0] | |
else: | |
# max 32 frames / 2 fps | |
s, e = parse_span(anno['span'][0], anno['duration'], 16) | |
# apply temporal jittering | |
offset = (e - s) / 4 | |
s = random.uniform(s - offset, s + offset) | |
e = random.uniform(e - offset, e + offset) | |
# clamp the augmented span | |
s, e = parse_span([s, e], anno['duration']) | |
messages = [{ | |
'role': | |
'user', | |
'content': [{ | |
'type': 'video', | |
'video': video_path, | |
'video_start': s, | |
'video_end': e, | |
'min_pixels': 128 * 28 * 28, | |
'max_pixels': 256 * 28 * 28, | |
'max_frames': 32, | |
'fps': 2.0 | |
}, { | |
'type': 'text', | |
'text': question | |
}] | |
}, { | |
'role': 'assistant', | |
'content': answer | |
}] | |
meta = dict(messages=messages) | |
return meta | |