Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
import nncore | |
from videomind.dataset.hybrid import DATASETS | |
from videomind.dataset.wrappers import GroundingDataset | |
from videomind.utils.parser import parse_query | |
class VideoXumDataset(GroundingDataset): | |
ANNO_PATH_TRAIN = 'data/videoxum/train_videoxum.json' | |
ANNO_PATH_VALID = 'data/videoxum/val_videoxum.json' | |
ANNO_PATH_TEST = 'data/videoxum/test_videoxum.json' | |
VIDEO_ROOT = 'data/activitynet/videos_3fps_480_noaudio' | |
UNIT = 0.01 | |
def load_annos(self, split='train'): | |
if split == 'train': | |
raw_annos = nncore.load(self.ANNO_PATH_TRAIN) | |
elif split == 'valid': | |
raw_annos = nncore.load(self.ANNO_PATH_VALID) | |
else: | |
raw_annos = nncore.load(self.ANNO_PATH_TEST) | |
annos = [] | |
for raw_anno in raw_annos: | |
vid = raw_anno['video_id'] | |
duration = raw_anno['duration'] | |
for query, spans in zip(raw_anno['tsum'], raw_anno['vsum']): | |
assert len(spans) == 10 | |
# average the spans from 10 annotators | |
span = [round(sum(s[0] for s in spans) / 10, 2), round(sum(s[1] for s in spans) / 10, 2)] | |
anno = dict( | |
source='videoxum', | |
data_type='grounding', | |
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
duration=duration, | |
query=parse_query(query), | |
span=[span]) | |
annos.append(anno) | |
annos.append(anno) | |
return annos | |