Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
import nncore | |
from torch.utils.data import Dataset | |
import pandas as pd | |
from videomind.dataset.hybrid import DATASETS | |
from videomind.utils.parser import parse_query, parse_question | |
class VideoMMEDataset(Dataset): | |
ANNO_PATH = 'data/videomme/test-00000-of-00001.parquet' | |
VIDEO_ROOT = 'data/videomme/videos' | |
SUBTITLE_ROOT = 'data/videomme/subtitles' | |
def load_annos(self, split='test'): | |
assert split == 'test' | |
raw_annos = pd.read_parquet(self.ANNO_PATH).to_dict(orient='records') | |
annos = [] | |
for raw_anno in raw_annos: | |
vid = raw_anno['videoID'] | |
options = raw_anno['options'].tolist() | |
assert len(options) == 4 | |
assert all(any(o.startswith(k) for k in ('A. ', 'B. ', 'C. ', 'D. ')) for o in options) | |
options = [o[3:] for o in options] | |
ans = raw_anno['answer'] | |
answer = options[ord(ans) - ord('A')] | |
assert ans in 'ABCD' | |
anno = dict( | |
source='videomme', | |
data_type='multimodal', | |
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
query=parse_query(raw_anno['question']), | |
question=parse_question(raw_anno['question']), | |
options=options, | |
answer=answer, | |
ans=ans, | |
task=raw_anno['duration']) | |
annos.append(anno) | |
return annos | |