Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
import nncore | |
from videomind.dataset.hybrid import DATASETS | |
from videomind.dataset.wrappers import GroundingDataset | |
from videomind.utils.parser import parse_query | |
class TACoSDataset(GroundingDataset): | |
ANNO_PATH_TRAIN = 'data/tacos/train.jsonl' | |
ANNO_PATH_VALID = 'data/tacos/val.jsonl' | |
ANNO_PATH_TEST = 'data/tacos/test.jsonl' | |
VIDEO_ROOT = 'data/tacos/videos_3fps_480_noaudio' | |
UNIT = 0.001 | |
def load_annos(self, split='train'): | |
if split == 'train': | |
raw_annos = nncore.load(self.ANNO_PATH_TRAIN) | |
elif split == 'val': | |
raw_annos = nncore.load(self.ANNO_PATH_VALID) | |
else: | |
raw_annos = nncore.load(self.ANNO_PATH_TEST) | |
annos = [] | |
for raw_anno in raw_annos: | |
assert len(raw_anno['relevant_windows']) == 1 | |
vid = raw_anno['vid'] | |
anno = dict( | |
source='tacos', | |
data_type='grounding', | |
video_path=nncore.join(self.VIDEO_ROOT, vid + '-cam-002.mp4'), | |
duration=raw_anno['duration'], | |
query=parse_query(raw_anno['query']), | |
span=raw_anno['relevant_windows']) | |
annos.append(anno) | |
return annos | |