Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
import nncore | |
from videomind.dataset.hybrid import DATASETS | |
from videomind.dataset.wrappers import AnsweringCropDataset | |
from videomind.utils.parser import parse_query, parse_question | |
class STARDataset(AnsweringCropDataset): | |
ANNO_PATH_TRAIN = 'data/star/STAR_train.json' | |
ANNO_PATH_VALID = 'data/star/STAR_val.json' | |
VIDEO_ROOT = 'data/charades_sta/videos_3fps_480_noaudio' | |
DURATIONS = 'data/charades_sta/durations.json' | |
UNIT = 0.1 | |
def load_annos(self, split='train'): | |
if split == 'train': | |
raw_annos = nncore.load(self.ANNO_PATH_TRAIN) | |
else: | |
raw_annos = nncore.load(self.ANNO_PATH_VALID) | |
durations = nncore.load(self.DURATIONS) | |
annos = [] | |
for raw_anno in raw_annos: | |
vid = raw_anno['video_id'] | |
options = [c['choice'] for c in raw_anno['choices']] | |
answer = raw_anno['answer'] | |
ans = chr(ord('A') + options.index(answer)) | |
anno = dict( | |
source='star', | |
data_type='multimodal', | |
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
duration=durations[vid], | |
query=parse_query(raw_anno['question']), | |
question=parse_question(raw_anno['question']), | |
options=options, | |
answer=answer, | |
ans=ans, | |
span=[[raw_anno['start'], raw_anno['end']]], | |
task=raw_anno['question_id'].split('_')[0], | |
no_aug=True) | |
annos.append(anno) | |
return annos | |