Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
import nncore | |
from videomind.dataset.hybrid import DATASETS | |
from videomind.dataset.wrappers import GroundingDataset | |
from videomind.utils.parser import parse_query | |
class QVHighlightsDataset(GroundingDataset): | |
ANNO_PATH_TRAIN = 'data/qvhighlights/highlight_train_release.jsonl' | |
ANNO_PATH_VALID = 'data/qvhighlights/highlight_val_release.jsonl' | |
ANNO_PATH_TEST = 'data/qvhighlights/highlight_test_release.jsonl' | |
VIDEO_ROOT = 'data/qvhighlights/videos_3fps_480_noaudio' | |
UNIT = 2.0 | |
def load_annos(self, split='train'): | |
if split == 'train': | |
raw_annos = nncore.load(self.ANNO_PATH_TRAIN) | |
elif split == 'valid': | |
raw_annos = nncore.load(self.ANNO_PATH_VALID) | |
else: | |
print('WARNING: Test split does not have ground truth annotations') | |
raw_annos = nncore.load(self.ANNO_PATH_TEST) | |
annos = [] | |
for raw_anno in raw_annos: | |
vid = raw_anno['vid'] | |
qid = raw_anno['qid'] | |
anno = dict( | |
source='qvhighlights', | |
data_type='grounding', | |
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
duration=raw_anno['duration'], | |
query=parse_query(raw_anno['query']), | |
span=raw_anno.get('relevant_windows'), | |
vid=vid, | |
qid=qid) | |
annos.append(anno) | |
return annos | |
class QVHighlightsSingleDataset(QVHighlightsDataset): | |
def load_annos(self, split='train'): | |
assert split == 'train' | |
raw_annos = nncore.load(self.ANNO_PATH_TRAIN) | |
annos = [] | |
for raw_anno in raw_annos: | |
# skip samples with multiple moments | |
if len(raw_anno['relevant_windows']) > 1: | |
continue | |
vid = raw_anno['vid'] | |
anno = dict( | |
source='qvhighlights_single', | |
data_type='grounding', | |
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
duration=raw_anno['duration'], | |
query=parse_query(raw_anno['query']), | |
span=raw_anno.get('relevant_windows')) | |
annos.append(anno) | |
return annos | |