yeliudev's picture
Upload folder using huggingface_hub
6073e55 verified
raw
history blame contribute delete
3.17 kB
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License.
import random
import nncore
from videomind.dataset.hybrid import DATASETS
from videomind.dataset.wrappers import AnsweringCropDataset, AnsweringDataset, GroundingDataset
from videomind.utils.parser import parse_query, parse_question
@DATASETS.register(name='qa_ego4d')
class QAEgo4DDataset(AnsweringDataset):
ANNO_PATH_TRAIN = 'data/qa_ego4d/annotations.QaEgo4D_train.json'
ANNO_PATH_VALID = 'data/qa_ego4d/annotations.QaEgo4D_val_options.json'
ANNO_PATH_TEST = 'data/qa_ego4d/annotations.QaEgo4D_test_options.json'
VIDEO_ROOT = 'data/ego4d/v1/videos_3fps_480_noaudio'
DURATIONS = 'data/ego4d/v1/durations.json'
SOURCE = 'qa_ego4d'
DATA_TYPE = 'multimodal'
UNIT = 0.001
@classmethod
def load_annos(self, split='train'):
if split == 'train':
raw_annos = nncore.load(self.ANNO_PATH_TRAIN)
elif split == 'valid':
raw_annos = nncore.load(self.ANNO_PATH_VALID)
else:
raw_annos = nncore.load(self.ANNO_PATH_TEST)
durations = nncore.load(self.DURATIONS)
annos = []
for raw_anno in raw_annos:
vid = raw_anno['video_id']
duration = durations[vid]
# too short or too long samples
if split == 'train' and (duration < 10 or duration > 600):
continue
span = [raw_anno['moment_start_frame'] / 30, raw_anno['moment_end_frame'] / 30]
span = [round(span[0], 3), round(span[1], 3)]
# skip samples with too short moments
# if split == 'train' and span[1] - span[0] < 2:
# continue
answer = raw_anno['answer'].capitalize()
if 'options' in raw_anno:
options = [o.capitalize() for o in raw_anno['options']]
idx = options.index(answer)
ans = chr(ord('A') + idx)
else:
# NOTE: indeterministic evaluation
assert len(raw_anno['wrong_answers']) == 3
idx = random.randint(0, 3)
ans = chr(ord('A') + idx)
options = [o.capitalize() for o in raw_anno['wrong_answers']]
options.insert(idx, answer)
assert len(options) == 4, options
anno = dict(
source=self.SOURCE,
data_type=self.DATA_TYPE,
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'),
duration=duration,
query=parse_query(raw_anno['question'].capitalize()),
question=parse_question(raw_anno['question'].capitalize()),
options=options,
answer=answer,
ans=ans,
span=[span])
annos.append(anno)
return annos
@DATASETS.register(name='qa_ego4d_crop')
class QAEgo4DCropDataset(AnsweringCropDataset, QAEgo4DDataset):
SOURCE = 'qa_ego4d_crop'
@DATASETS.register(name='qa_ego4d_grounding')
class QAEgo4DGroundingDataset(GroundingDataset, QAEgo4DDataset):
SOURCE = 'qa_ego4d_grounding'
DATA_TYPE = 'grounding'