Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
import random | |
import nncore | |
from videomind.dataset.hybrid import DATASETS | |
from videomind.dataset.wrappers import AnsweringCropDataset, AnsweringDataset, GroundingDataset | |
from videomind.utils.parser import parse_query, parse_question | |
class QAEgo4DDataset(AnsweringDataset): | |
ANNO_PATH_TRAIN = 'data/qa_ego4d/annotations.QaEgo4D_train.json' | |
ANNO_PATH_VALID = 'data/qa_ego4d/annotations.QaEgo4D_val_options.json' | |
ANNO_PATH_TEST = 'data/qa_ego4d/annotations.QaEgo4D_test_options.json' | |
VIDEO_ROOT = 'data/ego4d/v1/videos_3fps_480_noaudio' | |
DURATIONS = 'data/ego4d/v1/durations.json' | |
SOURCE = 'qa_ego4d' | |
DATA_TYPE = 'multimodal' | |
UNIT = 0.001 | |
def load_annos(self, split='train'): | |
if split == 'train': | |
raw_annos = nncore.load(self.ANNO_PATH_TRAIN) | |
elif split == 'valid': | |
raw_annos = nncore.load(self.ANNO_PATH_VALID) | |
else: | |
raw_annos = nncore.load(self.ANNO_PATH_TEST) | |
durations = nncore.load(self.DURATIONS) | |
annos = [] | |
for raw_anno in raw_annos: | |
vid = raw_anno['video_id'] | |
duration = durations[vid] | |
# too short or too long samples | |
if split == 'train' and (duration < 10 or duration > 600): | |
continue | |
span = [raw_anno['moment_start_frame'] / 30, raw_anno['moment_end_frame'] / 30] | |
span = [round(span[0], 3), round(span[1], 3)] | |
# skip samples with too short moments | |
# if split == 'train' and span[1] - span[0] < 2: | |
# continue | |
answer = raw_anno['answer'].capitalize() | |
if 'options' in raw_anno: | |
options = [o.capitalize() for o in raw_anno['options']] | |
idx = options.index(answer) | |
ans = chr(ord('A') + idx) | |
else: | |
# NOTE: indeterministic evaluation | |
assert len(raw_anno['wrong_answers']) == 3 | |
idx = random.randint(0, 3) | |
ans = chr(ord('A') + idx) | |
options = [o.capitalize() for o in raw_anno['wrong_answers']] | |
options.insert(idx, answer) | |
assert len(options) == 4, options | |
anno = dict( | |
source=self.SOURCE, | |
data_type=self.DATA_TYPE, | |
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
duration=duration, | |
query=parse_query(raw_anno['question'].capitalize()), | |
question=parse_question(raw_anno['question'].capitalize()), | |
options=options, | |
answer=answer, | |
ans=ans, | |
span=[span]) | |
annos.append(anno) | |
return annos | |
class QAEgo4DCropDataset(AnsweringCropDataset, QAEgo4DDataset): | |
SOURCE = 'qa_ego4d_crop' | |
class QAEgo4DGroundingDataset(GroundingDataset, QAEgo4DDataset): | |
SOURCE = 'qa_ego4d_grounding' | |
DATA_TYPE = 'grounding' | |