Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
import nncore | |
from torch.utils.data import Dataset | |
from videomind.dataset.hybrid import DATASETS | |
from videomind.utils.parser import parse_query, parse_question | |
class LVBenchDataset(Dataset): | |
ANNO_PATH = 'data/lvbench/LVBench/video_info.meta.jsonl' | |
VIDEO_ROOT = 'data/lvbench/videos_3fps_480_noaudio' | |
def load_annos(self, split='test'): | |
assert split == 'test' | |
raw_annos = nncore.load(self.ANNO_PATH) | |
annos = [] | |
for raw_anno in raw_annos: | |
vid = raw_anno['key'] | |
for meta in raw_anno['qa']: | |
tok = meta['question'].split('\n') | |
assert len(tok) == 5 | |
assert all(any(o.startswith(k) for k in ('(A) ', '(B) ', '(C) ', '(D) ')) for o in tok[1:]) | |
options = [o[4:] for o in tok[1:]] | |
ans = meta['answer'] | |
answer = options[ord(ans) - ord('A')] | |
assert ans in 'ABCD' | |
anno = dict( | |
source='lvbench', | |
data_type='multimodal', | |
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
query=parse_query(tok[0]), | |
question=parse_question(tok[0]), | |
options=options, | |
answer=answer, | |
ans=ans, | |
task=meta['question_type'], | |
time_reference=meta['time_reference']) | |
annos.append(anno) | |
return annos | |