Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
import random | |
import nncore | |
from videomind.dataset.hybrid import DATASETS | |
from videomind.dataset.wrappers import AnsweringCropDataset, AnsweringDataset, GroundingDataset | |
from videomind.utils.parser import parse_query, parse_question | |
class EgoTimeQADataset(AnsweringDataset): | |
ANNO_PATH_TRAIN = 'data/ego_timeqa/annotations.EgoTimeQA.json' | |
VIDEO_ROOT = 'data/ego4d/v2/videos_3fps_480_noaudio' | |
DURATIONS = 'data/ego4d/v2/durations.json' | |
SOURCE = 'ego_timeqa' | |
DATA_TYPE = 'multimodal' | |
UNIT = 0.001 | |
def load_annos(self, split='train'): | |
assert split == 'train' | |
raw_annos = nncore.load(self.ANNO_PATH_TRAIN) | |
durations = nncore.load(self.DURATIONS) | |
annos = [] | |
for raw_anno in raw_annos: | |
vid = raw_anno['video_id'] | |
duration = durations[vid] | |
# 303k -> 284k (to be verified) | |
if duration < 10 or duration > 600: | |
continue | |
span = [raw_anno['moment_start_frame'] / 30, raw_anno['moment_end_frame'] / 30] | |
span = [round(span[0], 3), round(span[1], 3)] | |
# this would remove many samples (284k -> 37k) | |
# if span[1] - span[0] < 2: | |
# continue | |
question = raw_anno['question'].replace(' l ', ' I ').capitalize() | |
question = parse_question(question) | |
query = parse_query(question) | |
# too short or too long samples | |
num_words = len(query.split(' ')) | |
if split == 'train' and (num_words < 3 or num_words > 30): | |
continue | |
answer = raw_anno['answer'].capitalize() | |
assert len(raw_anno['wrong_answers']) == 3 | |
idx = random.randint(0, 3) | |
ans = chr(ord('A') + idx) | |
options = [o.capitalize() for o in raw_anno['wrong_answers']] | |
options.insert(idx, answer) | |
anno = dict( | |
source=self.SOURCE, | |
data_type=self.DATA_TYPE, | |
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
duration=duration, | |
query=query, | |
question=question, | |
options=options, | |
answer=answer, | |
ans=ans, | |
span=[span]) | |
annos.append(anno) | |
return annos | |
class EgoTimeQACropDataset(AnsweringCropDataset, EgoTimeQADataset): | |
SOURCE = 'ego_timeqa_crop' | |
class EgoTimeQAGroundingDataset(GroundingDataset, EgoTimeQADataset): | |
SOURCE = 'ego_timeqa_grounding' | |
DATA_TYPE = 'grounding' | |