Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
import re | |
from collections import OrderedDict | |
import nncore | |
from videomind.dataset.hybrid import DATASETS | |
from videomind.dataset.wrappers import GroundingDataset | |
from videomind.utils.parser import parse_query | |
class ActivitynetRTLDataset(GroundingDataset): | |
ANNO_PATH_TRAIN = 'data/activitynet_rtl/activitynet_train_gpt-4-0613_temp_6_f10009.json' | |
ANNO_PATH_TEST = 'data/activitynet_rtl/annot_val_1_q229.json' | |
VIDEO_ROOT = 'data/activitynet/videos_3fps_480_noaudio' | |
UNIT = 0.01 | |
def load_annos(self, split='train'): | |
if split == 'train': | |
raw_annos = nncore.load(self.ANNO_PATH_TRAIN, object_pairs_hook=OrderedDict) | |
annos = [] | |
for vid, raw_anno in raw_annos.items(): | |
for meta in raw_anno['QA']: | |
match = re.findall(r'<(\d+(\.\d+)?)>', meta['a']) | |
span = [float(m[0]) for m in match[:2]] | |
# some samples do not have timestamps | |
if len(span) != 2: | |
continue | |
anno = dict( | |
source='activitynet_rtl', | |
data_type='grounding', | |
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
duration=raw_anno['duration'], | |
query=parse_query(meta['q']), | |
span=[span]) | |
annos.append(anno) | |
else: | |
raw_annos = nncore.load(self.ANNO_PATH_TEST, object_pairs_hook=OrderedDict) | |
annos = [] | |
for raw_anno in raw_annos: | |
vid = f"v_{raw_anno['vid']}" | |
match = re.findall(r'<(\d+(\.\d+)?)>', raw_anno['answer']) | |
span = [float(m[0]) for m in match[:2]] | |
assert len(span) == 2 | |
anno = dict( | |
source='activitynet_rtl', | |
data_type='grounding', | |
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
duration=raw_anno['duration'], | |
query=parse_query(raw_anno['question']), | |
span=[span]) | |
annos.append(anno) | |
return annos | |