VideoMind-2B / videomind /dataset /sub_classes /activitynet_captions.py
yeliudev's picture
Upload folder using huggingface_hub
6073e55 verified
raw
history blame contribute delete
3.58 kB
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License.
from collections import OrderedDict
import nncore
from videomind.dataset.hybrid import DATASETS
from videomind.dataset.wrappers import GroundingDataset
from videomind.utils.parser import parse_query
@DATASETS.register(name='activitynet_captions')
class ActivitynetCaptionsDataset(GroundingDataset):
ANNO_PATH_TRAIN = 'data/activitynet_captions/train.json'
ANNO_PATH_VALID = 'data/activitynet_captions/val_1.json'
ANNO_PATH_TEST = 'data/activitynet_captions/val_2.json'
VIDEO_ROOT = 'data/activitynet/videos_3fps_480_noaudio'
DURATIONS = 'data/activitynet/durations.json'
UNIT = 0.01
@classmethod
def load_annos(self, split='train'):
if split == 'train':
raw_annos = nncore.load(self.ANNO_PATH_TRAIN, object_pairs_hook=OrderedDict)
elif split == 'valid':
raw_annos = nncore.load(self.ANNO_PATH_VALID, object_pairs_hook=OrderedDict)
else:
raw_annos = nncore.load(self.ANNO_PATH_TEST, object_pairs_hook=OrderedDict)
durations = nncore.load(self.DURATIONS)
annos = []
for vid, raw_anno in raw_annos.items():
for query, span in zip(raw_anno['sentences'], raw_anno['timestamps']):
anno = dict(
source='activitynet_captions',
data_type='grounding',
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'),
duration=durations[vid],
query=parse_query(query),
span=[span])
annos.append(anno)
return annos
@DATASETS.register(name='activitynet_captions_bias')
class ActivitynetCaptionsBiasDataset(ActivitynetCaptionsDataset):
@classmethod
def load_annos(self, split='train'):
if split == 'train':
raw_annos = nncore.load(self.ANNO_PATH_TRAIN, object_pairs_hook=OrderedDict)
elif split == 'valid':
raw_annos = nncore.load(self.ANNO_PATH_VALID, object_pairs_hook=OrderedDict)
else:
raw_annos = nncore.load(self.ANNO_PATH_TEST, object_pairs_hook=OrderedDict)
durations = nncore.load(self.DURATIONS)
annos = []
for vid, raw_anno in raw_annos.items():
assert len(raw_anno['sentences']) == len(raw_anno['timestamps'])
for i in range(len(raw_anno['sentences']) - 1):
span_a = raw_anno['timestamps'][i]
span_b = raw_anno['timestamps'][i + 1]
if span_b[0] - span_a[1] < 3:
query_a = parse_query(f"The moment before {raw_anno['sentences'][i + 1]}")
query_b = parse_query(f"The moment after {raw_anno['sentences'][i]}")
anno_a = dict(
source='activitynet_captions_bias',
data_type='grounding',
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'),
duration=durations[vid],
query=query_a,
span=[span_a])
anno_b = dict(
source='activitynet_captions_bias',
data_type='grounding',
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'),
duration=durations[vid],
query=query_b,
span=[span_b])
annos.append(anno_a)
annos.append(anno_b)
return annos