Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License. | |
from collections import OrderedDict | |
import nncore | |
from videomind.dataset.hybrid import DATASETS | |
from videomind.dataset.wrappers import GroundingDataset | |
from videomind.utils.parser import parse_query | |
class ActivitynetCaptionsDataset(GroundingDataset): | |
ANNO_PATH_TRAIN = 'data/activitynet_captions/train.json' | |
ANNO_PATH_VALID = 'data/activitynet_captions/val_1.json' | |
ANNO_PATH_TEST = 'data/activitynet_captions/val_2.json' | |
VIDEO_ROOT = 'data/activitynet/videos_3fps_480_noaudio' | |
DURATIONS = 'data/activitynet/durations.json' | |
UNIT = 0.01 | |
def load_annos(self, split='train'): | |
if split == 'train': | |
raw_annos = nncore.load(self.ANNO_PATH_TRAIN, object_pairs_hook=OrderedDict) | |
elif split == 'valid': | |
raw_annos = nncore.load(self.ANNO_PATH_VALID, object_pairs_hook=OrderedDict) | |
else: | |
raw_annos = nncore.load(self.ANNO_PATH_TEST, object_pairs_hook=OrderedDict) | |
durations = nncore.load(self.DURATIONS) | |
annos = [] | |
for vid, raw_anno in raw_annos.items(): | |
for query, span in zip(raw_anno['sentences'], raw_anno['timestamps']): | |
anno = dict( | |
source='activitynet_captions', | |
data_type='grounding', | |
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
duration=durations[vid], | |
query=parse_query(query), | |
span=[span]) | |
annos.append(anno) | |
return annos | |
class ActivitynetCaptionsBiasDataset(ActivitynetCaptionsDataset): | |
def load_annos(self, split='train'): | |
if split == 'train': | |
raw_annos = nncore.load(self.ANNO_PATH_TRAIN, object_pairs_hook=OrderedDict) | |
elif split == 'valid': | |
raw_annos = nncore.load(self.ANNO_PATH_VALID, object_pairs_hook=OrderedDict) | |
else: | |
raw_annos = nncore.load(self.ANNO_PATH_TEST, object_pairs_hook=OrderedDict) | |
durations = nncore.load(self.DURATIONS) | |
annos = [] | |
for vid, raw_anno in raw_annos.items(): | |
assert len(raw_anno['sentences']) == len(raw_anno['timestamps']) | |
for i in range(len(raw_anno['sentences']) - 1): | |
span_a = raw_anno['timestamps'][i] | |
span_b = raw_anno['timestamps'][i + 1] | |
if span_b[0] - span_a[1] < 3: | |
query_a = parse_query(f"The moment before {raw_anno['sentences'][i + 1]}") | |
query_b = parse_query(f"The moment after {raw_anno['sentences'][i]}") | |
anno_a = dict( | |
source='activitynet_captions_bias', | |
data_type='grounding', | |
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
duration=durations[vid], | |
query=query_a, | |
span=[span_a]) | |
anno_b = dict( | |
source='activitynet_captions_bias', | |
data_type='grounding', | |
video_path=nncore.join(self.VIDEO_ROOT, vid + '.mp4'), | |
duration=durations[vid], | |
query=query_b, | |
span=[span_b]) | |
annos.append(anno_a) | |
annos.append(anno_b) | |
return annos | |