File size: 5,516 Bytes
6073e55
23fdbc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause License.

import copy

import nncore
import torch
from nncore.ops import temporal_iou
from torch.utils.data import Dataset

from videomind.constants import VERIFIER_PROMPT
from videomind.dataset.hybrid import DATASETS
from videomind.utils.parser import parse_span


class VerifyingDataset(Dataset):

    def __init__(self, processor, model_args, data_args, training_args):
        super(VerifyingDataset, self).__init__()

        raw_annos = self.load_annos()

        annos = []
        for anno in raw_annos:
            num_words = len(anno['query'].split(' '))
            if data_args.min_num_words >= 0 and num_words < data_args.min_num_words:
                continue
            if data_args.max_num_words >= 0 and num_words > data_args.max_num_words:
                continue
            if data_args.min_video_len >= 0 and anno.get('duration', float('inf')) < data_args.min_video_len:
                continue
            if data_args.max_video_len >= 0 and anno.get('duration', 0) > data_args.max_video_len:
                continue
            annos.append(anno)

        self.annos = annos
        self.raw_length = len(raw_annos)
        self.processor = processor
        self.model_args = model_args
        self.data_args = data_args
        self.training_args = training_args

    def __len__(self):
        return len(self.annos)

    @classmethod
    def load_annos(self, split='train'):
        assert split == 'train'

        if nncore.is_dir(self.ANNO_PATH):
            raw_paths = nncore.ls(self.ANNO_PATH, ext='json', join_path=True, sort=True)
            raw_annos = nncore.flatten([nncore.load(p) for p in raw_paths])
        else:
            raw_annos = nncore.load(self.ANNO_PATH)

        annos = []
        for raw_anno in raw_annos:
            # using top-5 predictions
            for pred in raw_anno['pred'][:5]:
                iou = temporal_iou(torch.Tensor([pred]), torch.Tensor(raw_anno['span']))
                iou = torch.where(iou.isfinite(), iou, 0)
                iou = iou.max().item()

                positive = iou >= 0.5

                anno = dict(
                    source=self.SOURCE,
                    data_type='multimodal',
                    video_path=raw_anno['video_path'],
                    duration=raw_anno['duration'],
                    query=raw_anno['query'],
                    span=raw_anno['span'],
                    pred=pred,
                    positive=positive,
                    task=raw_anno.get('task', 'unknown'))

                annos.append(anno)

        pos_inds = [i for i, a in enumerate(annos) if a['positive']]
        neg_inds = [i for i, a in enumerate(annos) if not a['positive']]

        num_pos = len(pos_inds)
        num_neg = len(neg_inds)

        print(f'[{self.SOURCE}] pos: {num_pos} neg: {num_neg} n/p ratio: {num_neg / num_pos}')

        # filter negative samples
        # if num_neg > num_pos * 3:
        #     neg_inds = random.sample(neg_inds, int(num_pos * 3))

        # inds = pos_inds + neg_inds
        # random.shuffle(inds)
        # inds = comm.broadcast(inds)

        # annos = [annos[i] for i in inds]

        return annos

    def __getitem__(self, idx):
        anno = copy.deepcopy(self.annos[idx])

        video_path, duration, query, positive = anno['video_path'], anno['duration'], anno['query'], anno['positive']

        s0, e0 = parse_span(anno['pred'], duration, 2)
        offset = (e0 - s0) / 2
        s1, e1 = parse_span([s0 - offset, e0 + offset], duration)

        # percentage of s0, e0 within s1, e1
        s = (s0 - s1) / (e1 - s1)
        e = (e0 - s1) / (e1 - s1)

        messages = [{
            'role':
            'user',
            'content': [{
                'type': 'video',
                'video': video_path,
                'video_start': s1,
                'video_end': e1,
                'min_pixels': 36 * 28 * 28,
                'max_pixels': 64 * 28 * 28,
                'max_frames': 64,
                'fps': 2.0
            }, {
                'type': 'text',
                'text': VERIFIER_PROMPT.format(query)
            }]
        }]

        messages = messages + [{'role': 'assistant', 'content': 'Yes.' if positive else 'No.'}]
        meta = dict(messages=messages, ss=s, se=e)

        return meta


@DATASETS.register(name='qvhighlights_verify_2b')
class QVHighlightsVerify2BDataset(VerifyingDataset):

    ANNO_PATH = 'data/verifying/verifying_qvhighlights_2b.json'

    SOURCE = 'qvhighlights_verify_2b'


@DATASETS.register(name='didemo_verify_2b')
class DiDeMoVerify2BDataset(VerifyingDataset):

    ANNO_PATH = 'data/verifying/verifying_didemo_2b.json'

    SOURCE = 'didemo_verify_2b'


@DATASETS.register(name='tacos_verify_2b')
class TACoSVerify2BDataset(VerifyingDataset):

    ANNO_PATH = 'data/verifying/verifying_tacos_2b.json'

    SOURCE = 'tacos_verify_2b'


@DATASETS.register(name='qvhighlights_verify_7b')
class QVHighlightsVerify7BDataset(VerifyingDataset):

    ANNO_PATH = 'data/verifying/verifying_qvhighlights_7b.json'

    SOURCE = 'qvhighlights_verify_7b'


@DATASETS.register(name='didemo_verify_7b')
class DiDeMoVerify7BDataset(VerifyingDataset):

    ANNO_PATH = 'data/verifying/verifying_didemo_7b.json'

    SOURCE = 'didemo_verify_7b'


@DATASETS.register(name='tacos_verify_7b')
class TACoSVerify7BDataset(VerifyingDataset):

    ANNO_PATH = 'data/verifying/verifying_tacos_7b.json'

    SOURCE = 'tacos_verify_7b'