Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# | |
# Copyright 2017 Martin Heusel | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Adapted from the original implementation by Martin Heusel. | |
# Source https://github.com/bioinf-jku/TTUR/blob/master/fid.py | |
''' Calculates the Frechet Inception Distance (FID) to evalulate GANs. | |
The FID metric calculates the distance between two distributions of images. | |
Typically, we have summary statistics (mean & covariance matrix) of one | |
of these distributions, while the 2nd distribution is given by a GAN. | |
When run as a stand-alone program, it compares the distribution of | |
images that are stored as PNG/JPEG at a specified location with a | |
distribution given by summary statistics (in pickle format). | |
The FID is calculated by assuming that X_1 and X_2 are the activations of | |
the pool_3 layer of the inception net for generated samples and real world | |
samples respectivly. | |
See --help to see further details. | |
''' | |
from __future__ import absolute_import, division, print_function | |
import numpy as np | |
import scipy as sp | |
import os | |
import gzip, pickle | |
import tensorflow as tf | |
from scipy.misc import imread | |
import pathlib | |
import urllib | |
class InvalidFIDException(Exception): | |
pass | |
def create_inception_graph(pth): | |
"""Creates a graph from saved GraphDef file.""" | |
# Creates graph from saved graph_def.pb. | |
with tf.gfile.FastGFile( pth, 'rb') as f: | |
graph_def = tf.GraphDef() | |
graph_def.ParseFromString( f.read()) | |
_ = tf.import_graph_def( graph_def, name='FID_Inception_Net') | |
#------------------------------------------------------------------------------- | |
# code for handling inception net derived from | |
# https://github.com/openai/improved-gan/blob/master/inception_score/model.py | |
def _get_inception_layer(sess): | |
"""Prepares inception net for batched usage and returns pool_3 layer. """ | |
layername = 'FID_Inception_Net/pool_3:0' | |
pool3 = sess.graph.get_tensor_by_name(layername) | |
ops = pool3.graph.get_operations() | |
for op_idx, op in enumerate(ops): | |
for o in op.outputs: | |
shape = o.get_shape() | |
if shape._dims is not None: | |
shape = [s.value for s in shape] | |
new_shape = [] | |
for j, s in enumerate(shape): | |
if s == 1 and j == 0: | |
new_shape.append(None) | |
else: | |
new_shape.append(s) | |
try: | |
o._shape = tf.TensorShape(new_shape) | |
except ValueError: | |
o._shape_val = tf.TensorShape(new_shape) # EDIT: added for compatibility with tensorflow 1.6.0 | |
return pool3 | |
#------------------------------------------------------------------------------- | |
def get_activations(images, sess, batch_size=50, verbose=False): | |
"""Calculates the activations of the pool_3 layer for all images. | |
Params: | |
-- images : Numpy array of dimension (n_images, hi, wi, 3). The values | |
must lie between 0 and 256. | |
-- sess : current session | |
-- batch_size : the images numpy array is split into batches with batch size | |
batch_size. A reasonable batch size depends on the disposable hardware. | |
-- verbose : If set to True and parameter out_step is given, the number of calculated | |
batches is reported. | |
Returns: | |
-- A numpy array of dimension (num images, 2048) that contains the | |
activations of the given tensor when feeding inception with the query tensor. | |
""" | |
inception_layer = _get_inception_layer(sess) | |
d0 = images.shape[0] | |
if batch_size > d0: | |
print("warning: batch size is bigger than the data size. setting batch size to data size") | |
batch_size = d0 | |
n_batches = d0//batch_size | |
n_used_imgs = n_batches*batch_size | |
pred_arr = np.empty((n_used_imgs,2048)) | |
for i in range(n_batches): | |
if verbose: | |
print("\rPropagating batch %d/%d" % (i+1, n_batches), end="", flush=True) | |
start = i*batch_size | |
end = start + batch_size | |
batch = images[start:end] | |
pred = sess.run(inception_layer, {'FID_Inception_Net/ExpandDims:0': batch}) | |
pred_arr[start:end] = pred.reshape(batch_size,-1) | |
if verbose: | |
print(" done") | |
return pred_arr | |
#------------------------------------------------------------------------------- | |
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2): | |
"""Numpy implementation of the Frechet Distance. | |
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) | |
and X_2 ~ N(mu_2, C_2) is | |
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). | |
Params: | |
-- mu1 : Numpy array containing the activations of the pool_3 layer of the | |
inception net ( like returned by the function 'get_predictions') | |
-- mu2 : The sample mean over activations of the pool_3 layer, precalcualted | |
on an representive data set. | |
-- sigma2: The covariance matrix over activations of the pool_3 layer, | |
precalcualted on an representive data set. | |
Returns: | |
-- dist : The Frechet Distance. | |
Raises: | |
-- InvalidFIDException if nan occures. | |
""" | |
m = np.square(mu1 - mu2).sum() | |
#s = sp.linalg.sqrtm(np.dot(sigma1, sigma2)) # EDIT: commented out | |
s, _ = sp.linalg.sqrtm(np.dot(sigma1, sigma2), disp=False) # EDIT: added | |
dist = m + np.trace(sigma1+sigma2 - 2*s) | |
#if np.isnan(dist): # EDIT: commented out | |
# raise InvalidFIDException("nan occured in distance calculation.") # EDIT: commented out | |
#return dist # EDIT: commented out | |
return np.real(dist) # EDIT: added | |
#------------------------------------------------------------------------------- | |
def calculate_activation_statistics(images, sess, batch_size=50, verbose=False): | |
"""Calculation of the statistics used by the FID. | |
Params: | |
-- images : Numpy array of dimension (n_images, hi, wi, 3). The values | |
must lie between 0 and 255. | |
-- sess : current session | |
-- batch_size : the images numpy array is split into batches with batch size | |
batch_size. A reasonable batch size depends on the available hardware. | |
-- verbose : If set to True and parameter out_step is given, the number of calculated | |
batches is reported. | |
Returns: | |
-- mu : The mean over samples of the activations of the pool_3 layer of | |
the incption model. | |
-- sigma : The covariance matrix of the activations of the pool_3 layer of | |
the incption model. | |
""" | |
act = get_activations(images, sess, batch_size, verbose) | |
mu = np.mean(act, axis=0) | |
sigma = np.cov(act, rowvar=False) | |
return mu, sigma | |
#------------------------------------------------------------------------------- | |
#------------------------------------------------------------------------------- | |
# The following functions aren't needed for calculating the FID | |
# they're just here to make this module work as a stand-alone script | |
# for calculating FID scores | |
#------------------------------------------------------------------------------- | |
def check_or_download_inception(inception_path): | |
''' Checks if the path to the inception file is valid, or downloads | |
the file if it is not present. ''' | |
INCEPTION_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz' | |
if inception_path is None: | |
inception_path = '/tmp' | |
inception_path = pathlib.Path(inception_path) | |
model_file = inception_path / 'classify_image_graph_def.pb' | |
if not model_file.exists(): | |
print("Downloading Inception model") | |
from urllib import request | |
import tarfile | |
fn, _ = request.urlretrieve(INCEPTION_URL) | |
with tarfile.open(fn, mode='r') as f: | |
f.extract('classify_image_graph_def.pb', str(model_file.parent)) | |
return str(model_file) | |
def _handle_path(path, sess): | |
if path.endswith('.npz'): | |
f = np.load(path) | |
m, s = f['mu'][:], f['sigma'][:] | |
f.close() | |
else: | |
path = pathlib.Path(path) | |
files = list(path.glob('*.jpg')) + list(path.glob('*.png')) | |
x = np.array([imread(str(fn)).astype(np.float32) for fn in files]) | |
m, s = calculate_activation_statistics(x, sess) | |
return m, s | |
def calculate_fid_given_paths(paths, inception_path): | |
''' Calculates the FID of two paths. ''' | |
inception_path = check_or_download_inception(inception_path) | |
for p in paths: | |
if not os.path.exists(p): | |
raise RuntimeError("Invalid path: %s" % p) | |
create_inception_graph(str(inception_path)) | |
with tf.Session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
m1, s1 = _handle_path(paths[0], sess) | |
m2, s2 = _handle_path(paths[1], sess) | |
fid_value = calculate_frechet_distance(m1, s1, m2, s2) | |
return fid_value | |
if __name__ == "__main__": | |
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter | |
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) | |
parser.add_argument("path", type=str, nargs=2, | |
help='Path to the generated images or to .npz statistic files') | |
parser.add_argument("-i", "--inception", type=str, default=None, | |
help='Path to Inception model (will be downloaded if not provided)') | |
parser.add_argument("--gpu", default="", type=str, | |
help='GPU to use (leave blank for CPU only)') | |
args = parser.parse_args() | |
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu | |
fid_value = calculate_fid_given_paths(args.path, args.inception) | |
print("FID: ", fid_value) | |
#---------------------------------------------------------------------------- | |
# EDIT: added | |
class API: | |
def __init__(self, num_images, image_shape, image_dtype, minibatch_size): | |
import config | |
self.network_dir = os.path.join(config.result_dir, '_inception_fid') | |
self.network_file = check_or_download_inception(self.network_dir) | |
self.sess = tf.get_default_session() | |
create_inception_graph(self.network_file) | |
def get_metric_names(self): | |
return ['FID'] | |
def get_metric_formatting(self): | |
return ['%-10.4f'] | |
def begin(self, mode): | |
assert mode in ['warmup', 'reals', 'fakes'] | |
self.activations = [] | |
def feed(self, mode, minibatch): | |
act = get_activations(minibatch.transpose(0,2,3,1), self.sess, batch_size=minibatch.shape[0]) | |
self.activations.append(act) | |
def end(self, mode): | |
act = np.concatenate(self.activations) | |
mu = np.mean(act, axis=0) | |
sigma = np.cov(act, rowvar=False) | |
if mode in ['warmup', 'reals']: | |
self.mu_real = mu | |
self.sigma_real = sigma | |
fid = calculate_frechet_distance(mu, sigma, self.mu_real, self.sigma_real) | |
return [fid] | |
#---------------------------------------------------------------------------- | |