from google import genai from google.genai import types import numpy as np from langchain.text_splitter import RecursiveCharacterTextSplitter import os from dotenv import load_dotenv load_dotenv() client = genai.Client(api_key=os.getenv("api_key")) class RAG: def __init__(self): self.CHUNK_SIZE = 1024; self.CHUNK_OVERLAP = 75; self.MAX_BATCH_SIZE = 100; self.MODEL = "text-embedding-004"; self.TASK_TYPE = "SEMANTIC_SIMILARITY"; def split_text(self,text): try: return RecursiveCharacterTextSplitter( chunk_size=self.CHUNK_SIZE, chunk_overlap=self.CHUNK_OVERLAP, separators=["\n\n", "\n", ".", "!", "?", "。", " ", ""] ).split_text(text) except Exception as e: raise ValueError(f"an error occured: {e}") def generate_embedding(self,text,task_type=None): try: if(not task_type): task_type = self.TASK_TYPE embeddings = [] chunks = self.split_text(text) for i in range(0,len(chunks),self.MAX_BATCH_SIZE): response = client.models.embed_content( model=self.MODEL, contents=chunks[i:i + self.MAX_BATCH_SIZE], config=types.EmbedContentConfig(task_type=task_type) ) for chunk_embedding in response.embeddings: embeddings.append(chunk_embedding.values) return {"embeddings": embeddings, "chunks": chunks}, 200 except Exception as e: return {"an error occured": f"{e}"}, 500 rag = RAG()