Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,17 +4,20 @@ import logging
|
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
5 |
from datasets import load_dataset
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Set verbose logging
|
8 |
logging.basicConfig(level=logging.INFO)
|
9 |
logger = logging.getLogger(__name__)
|
10 |
|
11 |
-
# Set a writable cache directory
|
12 |
-
os.environ["HF_HOME"] = "/app/hf_cache"
|
13 |
-
os.environ["TRANSFORMERS_CACHE"] = "/app/hf_cache"
|
14 |
-
|
15 |
-
# Load dataset
|
16 |
logger.info("Loading dataset...")
|
17 |
-
ds = load_dataset("facebook/natural_reasoning")
|
18 |
logger.info(f"Dataset loaded successfully! Dataset info:\n{ds}")
|
19 |
|
20 |
# Load tokenizer
|
@@ -39,7 +42,6 @@ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
|
39 |
logger.info("Model loaded successfully!")
|
40 |
|
41 |
# Training arguments
|
42 |
-
logger.info("Setting up training arguments...")
|
43 |
training_args = TrainingArguments(
|
44 |
output_dir="./results",
|
45 |
evaluation_strategy="epoch",
|
@@ -50,14 +52,12 @@ training_args = TrainingArguments(
|
|
50 |
weight_decay=0.01,
|
51 |
logging_dir="./logs",
|
52 |
logging_steps=10,
|
53 |
-
push_to_hub=True,
|
54 |
-
report_to="none",
|
55 |
logging_first_step=True
|
56 |
)
|
57 |
-
logger.info("Training arguments set!")
|
58 |
|
59 |
# Trainer
|
60 |
-
logger.info("Initializing Trainer...")
|
61 |
trainer = Trainer(
|
62 |
model=model,
|
63 |
args=training_args,
|
@@ -65,7 +65,6 @@ trainer = Trainer(
|
|
65 |
eval_dataset=tokenized_datasets["test"],
|
66 |
tokenizer=tokenizer
|
67 |
)
|
68 |
-
logger.info("Trainer initialized!")
|
69 |
|
70 |
# Start training
|
71 |
logger.info("Starting training...")
|
|
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
5 |
from datasets import load_dataset
|
6 |
|
7 |
+
# ✅ Set a writable cache directory inside the container
|
8 |
+
os.environ["HF_HOME"] = "/app/hf_cache"
|
9 |
+
os.environ["TRANSFORMERS_CACHE"] = "/app/hf_cache"
|
10 |
+
os.environ["HF_DATASETS_CACHE"] = "/app/hf_cache"
|
11 |
+
|
12 |
+
# Ensure cache directory exists
|
13 |
+
os.makedirs("/app/hf_cache", exist_ok=True)
|
14 |
+
|
15 |
# Set verbose logging
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
19 |
logger.info("Loading dataset...")
|
20 |
+
ds = load_dataset("facebook/natural_reasoning") # Replace with your dataset
|
21 |
logger.info(f"Dataset loaded successfully! Dataset info:\n{ds}")
|
22 |
|
23 |
# Load tokenizer
|
|
|
42 |
logger.info("Model loaded successfully!")
|
43 |
|
44 |
# Training arguments
|
|
|
45 |
training_args = TrainingArguments(
|
46 |
output_dir="./results",
|
47 |
evaluation_strategy="epoch",
|
|
|
52 |
weight_decay=0.01,
|
53 |
logging_dir="./logs",
|
54 |
logging_steps=10,
|
55 |
+
push_to_hub=True,
|
56 |
+
report_to="none",
|
57 |
logging_first_step=True
|
58 |
)
|
|
|
59 |
|
60 |
# Trainer
|
|
|
61 |
trainer = Trainer(
|
62 |
model=model,
|
63 |
args=training_args,
|
|
|
65 |
eval_dataset=tokenized_datasets["test"],
|
66 |
tokenizer=tokenizer
|
67 |
)
|
|
|
68 |
|
69 |
# Start training
|
70 |
logger.info("Starting training...")
|