Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,25 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import os
|
|
|
|
|
|
|
4 |
hf_token = os.getenv('HF_API_TOKEN')
|
5 |
-
import streamlit as st
|
6 |
|
7 |
-
from transformers import pipeline
|
8 |
|
9 |
-
# Load the model
|
10 |
-
generator = pipeline("text-generation", model="meta-llama/Meta-Llama-3.1-8B", token= hf_token)
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
return predict(inputs)
|
21 |
|
22 |
-
st.
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
st.title("Llama3.1 API is Running")
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import os
|
4 |
+
from transformers import pipeline
|
5 |
+
import torch
|
6 |
+
|
7 |
hf_token = os.getenv('HF_API_TOKEN')
|
|
|
8 |
|
|
|
9 |
|
|
|
|
|
10 |
|
11 |
+
# Load the Llama 3.1 model and tokenizer
|
12 |
+
model_name = "meta-llama/Meta-Llama-3.1-8B"
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token= hf_token)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto", token= hf_token)
|
15 |
|
16 |
+
# Streamlit app interface
|
17 |
+
st.title("Llama 3.1 Text Generator")
|
18 |
+
prompt = st.text_area("Enter a prompt:", "Once upon a time")
|
|
|
19 |
|
20 |
+
if st.button("Generate"):
|
21 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
22 |
+
outputs = model.generate(**inputs, max_length=512, top_p=0.9, temperature=0.8)
|
23 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
24 |
+
st.write(generated_text)
|
25 |
|
|