Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,149 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
|
|
|
|
|
|
|
4 |
import os
|
5 |
-
from transformers import pipeline
|
6 |
import torch
|
7 |
|
|
|
8 |
hf_token = os.getenv('HF_API_TOKEN')
|
9 |
|
|
|
|
|
|
|
10 |
|
|
|
|
|
11 |
|
12 |
-
# Load the
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Streamlit app interface
|
18 |
-
st.title("
|
19 |
-
|
|
|
20 |
|
21 |
if st.button("Generate"):
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import requests
|
4 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, AutoModelForCausalLM
|
5 |
+
from huggingface_hub import HfFolder
|
6 |
+
from io import StringIO
|
7 |
import os
|
|
|
8 |
import torch
|
9 |
|
10 |
+
# Access the Hugging Face API token from environment variables
|
11 |
hf_token = os.getenv('HF_API_TOKEN')
|
12 |
|
13 |
+
if not hf_token:
|
14 |
+
raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")
|
15 |
+
HfFolder.save_token(hf_token)
|
16 |
|
17 |
+
# Set environment variable to avoid floating-point errors
|
18 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
19 |
|
20 |
+
# Load the tokenizer and model
|
21 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
22 |
+
model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')
|
23 |
+
|
24 |
+
# Create a pipeline for text generation using GPT-2
|
25 |
+
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer)
|
26 |
+
|
27 |
+
# Lazy loading function for Llama-3 model
|
28 |
+
model_llama = None
|
29 |
+
tokenizer_llama = None
|
30 |
+
|
31 |
+
def load_llama_model():
|
32 |
+
global model_llama, tokenizer_llama
|
33 |
+
if model_llama is None:
|
34 |
+
model_name = "meta-llama/Meta-Llama-3.1-8B"
|
35 |
+
model_llama = AutoModelForCausalLM.from_pretrained(
|
36 |
+
model_name,
|
37 |
+
torch_dtype=torch.float16, # Use FP16 for reduced memory
|
38 |
+
use_auth_token=hf_token
|
39 |
+
)
|
40 |
+
tokenizer_llama = AutoTokenizer.from_pretrained(model_name, token=hf_token)
|
41 |
+
|
42 |
+
# Define your prompt template
|
43 |
+
prompt_template = """\
|
44 |
+
You are an expert in generating synthetic data for machine learning models.
|
45 |
+
Your task is to generate a synthetic tabular dataset based on the description provided below.
|
46 |
+
Description: {description}
|
47 |
+
The dataset should include the following columns: {columns}
|
48 |
+
Please provide the data in CSV format with a minimum of 100 rows per generation.
|
49 |
+
Ensure that the data is realistic, does not contain any duplicate rows, and follows any specific conditions mentioned.
|
50 |
+
Example Description:
|
51 |
+
Generate a dataset for predicting house prices with columns: 'Size', 'Location', 'Number of Bedrooms', 'Price'
|
52 |
+
Example Output:
|
53 |
+
Size,Location,Number of Bedrooms,Price
|
54 |
+
1200,Suburban,3,250000
|
55 |
+
900,Urban,2,200000
|
56 |
+
1500,Rural,4,300000
|
57 |
+
...
|
58 |
+
Description:
|
59 |
+
{description}
|
60 |
+
Columns:
|
61 |
+
{columns}
|
62 |
+
Output: """
|
63 |
+
|
64 |
+
def preprocess_user_prompt(user_prompt):
|
65 |
+
generated_text = text_generator(user_prompt, max_length=60, num_return_sequences=1)[0]["generated_text"]
|
66 |
+
return generated_text
|
67 |
+
|
68 |
+
def format_prompt(description, columns):
|
69 |
+
processed_description = preprocess_user_prompt(description)
|
70 |
+
prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
|
71 |
+
return prompt
|
72 |
+
|
73 |
+
generation_params = {
|
74 |
+
"top_p": 0.90,
|
75 |
+
"temperature": 0.8,
|
76 |
+
"max_new_tokens": 512,
|
77 |
+
"return_full_text": False,
|
78 |
+
"use_cache": False
|
79 |
+
}
|
80 |
+
|
81 |
+
def generate_synthetic_data(description, columns):
|
82 |
+
try:
|
83 |
+
# Load the Llama model only when generating data
|
84 |
+
load_llama_model()
|
85 |
+
|
86 |
+
# Prepare the input for the Llama model
|
87 |
+
formatted_prompt = format_prompt(description, columns)
|
88 |
+
|
89 |
+
# Tokenize the prompt
|
90 |
+
inputs = tokenizer_llama(formatted_prompt, return_tensors="pt").to(model_llama.device)
|
91 |
+
|
92 |
+
# Generate synthetic data
|
93 |
+
with torch.no_grad():
|
94 |
+
outputs = model_llama.generate(
|
95 |
+
**inputs,
|
96 |
+
max_length=512,
|
97 |
+
top_p=generation_params["top_p"],
|
98 |
+
temperature=generation_params["temperature"],
|
99 |
+
num_return_sequences=1
|
100 |
+
)
|
101 |
+
|
102 |
+
# Decode the generated output
|
103 |
+
generated_text = tokenizer_llama.decode(outputs[0], skip_special_tokens=True)
|
104 |
+
|
105 |
+
# Return the generated synthetic data
|
106 |
+
return generated_text
|
107 |
+
except Exception as e:
|
108 |
+
print(f"Error in generate_synthetic_data: {e}")
|
109 |
+
return f"Error: {e}"
|
110 |
+
|
111 |
+
def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
|
112 |
+
data_frames = []
|
113 |
+
num_iterations = num_rows // rows_per_generation
|
114 |
+
|
115 |
+
for _ in range(num_iterations):
|
116 |
+
generated_data = generate_synthetic_data(description, columns)
|
117 |
+
if "Error" in generated_data:
|
118 |
+
return generated_data
|
119 |
+
df_synthetic = process_generated_data(generated_data)
|
120 |
+
data_frames.append(df_synthetic)
|
121 |
+
|
122 |
+
return pd.concat(data_frames, ignore_index=True)
|
123 |
+
|
124 |
+
def process_generated_data(csv_data):
|
125 |
+
data = StringIO(csv_data)
|
126 |
+
df = pd.read_csv(data)
|
127 |
+
return df
|
128 |
|
129 |
# Streamlit app interface
|
130 |
+
st.title("Synthetic Data Generator")
|
131 |
+
description = st.text_input("Description", "e.g., Generate a dataset for predicting students' grades")
|
132 |
+
columns = st.text_input("Columns (comma-separated)", "e.g., name, age, course, grade")
|
133 |
|
134 |
if st.button("Generate"):
|
135 |
+
description = description.strip()
|
136 |
+
columns = [col.strip() for col in columns.split(',')]
|
137 |
+
df_synthetic = generate_large_synthetic_data(description, columns)
|
138 |
+
|
139 |
+
if isinstance(df_synthetic, str) and "Error" in df_synthetic:
|
140 |
+
st.error(df_synthetic) # Display error message if any
|
141 |
+
else:
|
142 |
+
st.success("Synthetic Data Generated!")
|
143 |
+
st.dataframe(df_synthetic) # Display the generated DataFrame
|
144 |
+
st.download_button(
|
145 |
+
label="Download CSV",
|
146 |
+
data=df_synthetic.to_csv(index=False),
|
147 |
+
file_name="synthetic_data.csv",
|
148 |
+
mime="text/csv"
|
149 |
+
)
|