Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
-
|
2 |
-
import transformers
|
3 |
import streamlit as st
|
4 |
import pandas as pd
|
5 |
import os
|
6 |
import torch
|
|
|
7 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, AutoModelForCausalLM, pipeline
|
8 |
from huggingface_hub import HfFolder
|
9 |
from io import StringIO
|
|
|
10 |
|
11 |
# Access the Hugging Face API token from environment variables
|
12 |
hf_token = os.getenv('HF_API_TOKEN')
|
@@ -18,26 +18,25 @@ HfFolder.save_token(hf_token)
|
|
18 |
# Set environment variable to avoid floating-point errors
|
19 |
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
20 |
|
21 |
-
# Load the tokenizer and model
|
22 |
-
|
23 |
model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')
|
24 |
|
25 |
# Create a pipeline for text generation using GPT-2
|
26 |
-
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=
|
27 |
|
28 |
-
# Load the Llama model and tokenizer
|
29 |
-
|
30 |
-
tokenizer_llama = AutoTokenizer.from_pretrained(model_name, token=hf_token)
|
31 |
model_llama = AutoModelForCausalLM.from_pretrained(
|
32 |
-
|
33 |
-
torch_dtype=
|
34 |
-
device_map=
|
35 |
token=hf_token
|
36 |
)
|
37 |
|
38 |
|
39 |
|
40 |
-
|
41 |
prompt_template = """\
|
42 |
You are an expert in generating synthetic data for machine learning models.
|
43 |
Your task is to generate a synthetic tabular dataset based on the description provided below.
|
@@ -100,19 +99,25 @@ def generate_synthetic_data(description, columns):
|
|
100 |
# Return the generated synthetic data
|
101 |
return generated_text
|
102 |
except Exception as e:
|
103 |
-
|
104 |
return f"Error: {e}"
|
105 |
|
106 |
def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
|
107 |
data_frames = []
|
108 |
num_iterations = num_rows // rows_per_generation
|
109 |
|
110 |
-
|
|
|
|
|
|
|
111 |
generated_data = generate_synthetic_data(description, columns)
|
112 |
if "Error" in generated_data:
|
113 |
return generated_data
|
114 |
df_synthetic = process_generated_data(generated_data)
|
115 |
data_frames.append(df_synthetic)
|
|
|
|
|
|
|
116 |
|
117 |
return pd.concat(data_frames, ignore_index=True)
|
118 |
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import os
|
4 |
import torch
|
5 |
+
import transformers
|
6 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, AutoModelForCausalLM, pipeline
|
7 |
from huggingface_hub import HfFolder
|
8 |
from io import StringIO
|
9 |
+
from tqdm import tqdm # To display progress bar in Streamlit
|
10 |
|
11 |
# Access the Hugging Face API token from environment variables
|
12 |
hf_token = os.getenv('HF_API_TOKEN')
|
|
|
18 |
# Set environment variable to avoid floating-point errors
|
19 |
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
20 |
|
21 |
+
# Load the GPT-2 tokenizer and model
|
22 |
+
tokenizer_gpt2 = GPT2Tokenizer.from_pretrained('gpt2')
|
23 |
model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2')
|
24 |
|
25 |
# Create a pipeline for text generation using GPT-2
|
26 |
+
text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2)
|
27 |
|
28 |
+
# Load the Llama-3 model and tokenizer once during startup
|
29 |
+
tokenizer_llama = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B", token=hf_token)
|
|
|
30 |
model_llama = AutoModelForCausalLM.from_pretrained(
|
31 |
+
"meta-llama/Meta-Llama-3.1-8B",
|
32 |
+
torch_dtype= 'auto',
|
33 |
+
device_map= 'auto',
|
34 |
token=hf_token
|
35 |
)
|
36 |
|
37 |
|
38 |
|
39 |
+
# Define your prompt template
|
40 |
prompt_template = """\
|
41 |
You are an expert in generating synthetic data for machine learning models.
|
42 |
Your task is to generate a synthetic tabular dataset based on the description provided below.
|
|
|
99 |
# Return the generated synthetic data
|
100 |
return generated_text
|
101 |
except Exception as e:
|
102 |
+
st.error(f"Error in generate_synthetic_data: {e}")
|
103 |
return f"Error: {e}"
|
104 |
|
105 |
def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
|
106 |
data_frames = []
|
107 |
num_iterations = num_rows // rows_per_generation
|
108 |
|
109 |
+
# Create a progress bar
|
110 |
+
progress_bar = st.progress(0)
|
111 |
+
|
112 |
+
for i in tqdm(range(num_iterations)):
|
113 |
generated_data = generate_synthetic_data(description, columns)
|
114 |
if "Error" in generated_data:
|
115 |
return generated_data
|
116 |
df_synthetic = process_generated_data(generated_data)
|
117 |
data_frames.append(df_synthetic)
|
118 |
+
|
119 |
+
# Update the progress bar
|
120 |
+
progress_bar.progress((i + 1) / num_iterations)
|
121 |
|
122 |
return pd.concat(data_frames, ignore_index=True)
|
123 |
|