from fastapi import FastAPI, HTTPException from fastapi.responses import StreamingResponse, JSONResponse from pydantic import BaseModel import pandas as pd import os import requests from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, pipeline from io import StringIO from fastapi.middleware.cors import CORSMiddleware from huggingface_hub import HfFolder from tqdm import tqdm app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], # You can specify domains here allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Access the Hugging Face API token from environment variables hf_token = os.getenv('HF_API_TOKEN') if not hf_token: raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.") # Load GPT-2 model and tokenizer tokenizer_gpt2 = GPT2Tokenizer.from_pretrained('gpt2') model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2') # Create a pipeline for text generation using GPT-2 text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2) def preprocess_user_prompt(user_prompt): # Generate a structured prompt based on the user input generated_text = text_generator(user_prompt, max_length=50, num_return_sequences=1)[0]["generated_text"] return generated_text # Define prompt template prompt_template = """\ You are an expert in generating synthetic data for machine learning models. Your task is to generate a synthetic tabular dataset based on the description provided below. Description: {description} The dataset should include the following columns: {columns} Please provide the data in CSV format. Example Description: Generate a dataset for predicting house prices with columns: 'Size', 'Location', 'Number of Bedrooms', 'Price' Example Output: Size,Location,Number of Bedrooms,Price 1200,Suburban,3,250000 900,Urban,2,200000 1500,Rural,4,300000 ... Description: {description} Columns: {columns} Output: """ class DataGenerationRequest(BaseModel): description: str columns: list # Set up the Mixtral model and tokenizer token = hf_token # Use environment variable for the token HfFolder.save_token(token) tokenizer_mixtral = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", token=token) def format_prompt(description, columns): processed_description = preprocess_user_prompt(description) prompt = prompt_template.format(description=processed_description, columns=",".join(columns)) return prompt API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1" generation_params = { "top_p": 0.90, "temperature": 0.8, "max_new_tokens": 512, "return_full_text": False, "use_cache": False } def generate_synthetic_data(description, columns): formatted_prompt = format_prompt(description, columns) payload = {"inputs": formatted_prompt, "parameters": generation_params} response = requests.post(API_URL, headers={"Authorization": f"Bearer {hf_token}"}, json=payload) try: response_data = response.json() except ValueError: raise HTTPException(status_code=500, detail="Failed to parse response from the API.") if 'error' in response_data: raise HTTPException(status_code=500, detail=f"API Error: {response_data['error']}") if 'generated_text' not in response_data[0]: raise HTTPException(status_code=500, detail="Unexpected API response format.") return response_data[0]["generated_text"] def process_generated_data(csv_data, expected_columns): try: cleaned_data = csv_data.replace('\r\n', '\n').replace('\r', '\n') data = StringIO(cleaned_data) df = pd.read_csv(data, delimiter=',') if set(df.columns) != set(expected_columns): raise ValueError("Unexpected columns in the generated data.") return df except pd.errors.ParserError as e: raise HTTPException(status_code=500, detail=f"Failed to parse CSV data: {e}") def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100): csv_data_all = StringIO() for _ in tqdm(range(num_rows // rows_per_generation), desc="Generating Data"): generated_data = generate_synthetic_data(description, columns) df_synthetic = process_generated_data(generated_data, columns) if isinstance(df_synthetic, pd.DataFrame) and not df_synthetic.empty: df_synthetic.to_csv(csv_data_all, index=False, header=False) if csv_data_all.tell() > 0: # Check if there's any data in the buffer csv_data_all.seek(0) # Rewind the buffer to the beginning return csv_data_all else: raise HTTPException(status_code=500, detail="No valid data frames generated.") @app.post("/generate/") def generate_data(request: DataGenerationRequest): description = request.description.strip() columns = [col.strip() for col in request.columns] csv_data = generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100) # Return the CSV data as a downloadable file return StreamingResponse( csv_data, media_type="text/csv", headers={"Content-Disposition": "attachment; filename=generated_data.csv"} ) @app.get("/") def greet_json(): return {"Hello": "World!"}