from fastapi import FastAPI, HTTPException from fastapi.responses import StreamingResponse, JSONResponse from pydantic import BaseModel import pandas as pd import os import requests from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoTokenizer, pipeline from io import StringIO from fastapi.middleware.cors import CORSMiddleware from huggingface_hub import HfFolder from tqdm import tqdm app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], # You can specify domains here allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Access the Hugging Face API token from environment variables hf_token = os.getenv('HF_API_TOKEN') if not hf_token: raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.") # Load GPT-2 model and tokenizer tokenizer_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2') model_gpt2 = GPT2LMHeadModel.from_pretrained('gpt2') # Create a pipeline for text generation using GPT-2 text_generator = pipeline("text-generation", model=model_gpt2, tokenizer=tokenizer_gpt2) # Define prompt template prompt_template = """\ You are an expert in generating synthetic data for machine learning models. Your task is to generate a synthetic tabular dataset based on the description provided below. Description: {description} The dataset should include the following columns: {columns} Please provide the data in CSV format. Example Description: Generate a dataset for predicting house prices with columns: 'Size', 'Location', 'Number of Bedrooms', 'Price' Example Output: Size,Location,Number of Bedrooms,Price 1200,Suburban,3,250000 900,Urban,2,200000 1500,Rural,4,300000 ... Description: {description} Columns: {columns} Output: """ # Set up the Mixtral model and tokenizer token = os.getenv("HF_TOKEN") HfFolder.save_token(token) tokenizer_mixtral = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1", token=token) API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1" generation_params = { "top_p": 0.90, "temperature": 0.8, "max_new_tokens": 512, "return_full_text": False, "use_cache": False } def preprocess_user_prompt(user_prompt): generated_text = text_generator(user_prompt, max_length=50, num_return_sequences=1)[0]["generated_text"] return generated_text def format_prompt(description, columns): processed_description = preprocess_user_prompt(description) prompt = prompt_template.format(description=processed_description, columns=",".join(columns)) return prompt def generate_synthetic_data(description, columns): formatted_prompt = format_prompt(description, columns) payload = {"inputs": formatted_prompt, "parameters": generation_params} response = requests.post(API_URL, headers={"Authorization": f"Bearer {token}"}, json=payload) return response.json()[0]["generated_text"] def process_generated_data(csv_data, expected_columns): try: cleaned_data = csv_data.replace('\r\n', '\n').replace('\r', '\n') data = StringIO(cleaned_data) df = pd.read_csv(data, delimiter=',') if set(df.columns) != set(expected_columns): print(f"Unexpected columns in the generated data: {df.columns}") return None return df except pd.errors.ParserError as e: print(f"Failed to parse CSV data: {e}") return None def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100): data_frames = [] for _ in tqdm(range(num_rows // rows_per_generation), desc="Generating Data"): generated_data = generate_synthetic_data(description, columns) df_synthetic = process_generated_data(generated_data, columns) if df_synthetic is not None and not df_synthetic.empty: data_frames.append(df_synthetic) else: print("Skipping invalid generation.") if data_frames: return pd.concat(data_frames, ignore_index=True) else: print("No valid data frames to concatenate.") return pd.DataFrame(columns=columns) @app.route('/generate', methods=['POST']) def generate(): data = request.json description = data.get('description') columns = data.get('columns') num_rows = data.get('num_rows', 1000) if not description or not columns: return jsonify({"error": "Please provide 'description' and 'columns' in the request."}), 400 df_synthetic = generate_large_synthetic_data(description, columns, num_rows=num_rows) if df_synthetic is not None and not df_synthetic.empty: file_path = 'synthetic_data.csv' df_synthetic.to_csv(file_path, index=False) return send_file(file_path, as_attachment=True) else: return jsonify({"error": "Failed to generate a valid synthetic dataset."}), 500 if __name__ == "__main__": app.run(host='0.0.0.0', port=8000)