yakine commited on
Commit
faeede1
·
verified ·
1 Parent(s): ee3357c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -3
app.py CHANGED
@@ -11,7 +11,7 @@ if not hf_token:
11
  raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")
12
 
13
  # Set the inference endpoint URL
14
- inference_endpoint = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3.1-8B"
15
 
16
  # Define your prompt template
17
  prompt_template = """\
@@ -43,12 +43,17 @@ def format_prompt(description, columns):
43
  prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
44
  return prompt
45
 
 
 
 
 
 
46
  def generate_synthetic_data(description, columns):
47
  try:
48
  # Format the prompt
49
  formatted_prompt = format_prompt(description, columns)
50
 
51
- # Send a POST request to the Hugging Face Inference API
52
  headers = {
53
  "Authorization": f"Bearer {hf_token}",
54
  "Content-Type": "application/json"
@@ -68,13 +73,14 @@ def generate_synthetic_data(description, columns):
68
  return f"Error: {response.status_code}, {response.text}"
69
 
70
  # Extract the generated text from the response
71
- generated_text = response.json()[0]['generated_text']
72
  return generated_text
73
 
74
  except Exception as e:
75
  print(f"Error in generate_synthetic_data: {e}")
76
  return f"Error: {e}"
77
 
 
78
  def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
79
  data_frames = []
80
  num_iterations = num_rows // rows_per_generation
 
11
  raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")
12
 
13
  # Set the inference endpoint URL
14
+
15
 
16
  # Define your prompt template
17
  prompt_template = """\
 
43
  prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
44
  return prompt
45
 
46
+ import requests
47
+
48
+ # Define your Streamlit Space inference URL
49
+ inference_endpoint = "https://yakine-llama31.hf.space/predict"
50
+
51
  def generate_synthetic_data(description, columns):
52
  try:
53
  # Format the prompt
54
  formatted_prompt = format_prompt(description, columns)
55
 
56
+ # Send a POST request to the Streamlit Space API
57
  headers = {
58
  "Authorization": f"Bearer {hf_token}",
59
  "Content-Type": "application/json"
 
73
  return f"Error: {response.status_code}, {response.text}"
74
 
75
  # Extract the generated text from the response
76
+ generated_text = response.json()['data'] # Adjust based on your Streamlit Space response structure
77
  return generated_text
78
 
79
  except Exception as e:
80
  print(f"Error in generate_synthetic_data: {e}")
81
  return f"Error: {e}"
82
 
83
+
84
  def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
85
  data_frames = []
86
  num_iterations = num_rows // rows_per_generation