Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,7 @@ if not hf_token:
|
|
11 |
raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")
|
12 |
|
13 |
# Set the inference endpoint URL
|
14 |
-
|
15 |
|
16 |
# Define your prompt template
|
17 |
prompt_template = """\
|
@@ -43,12 +43,17 @@ def format_prompt(description, columns):
|
|
43 |
prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
|
44 |
return prompt
|
45 |
|
|
|
|
|
|
|
|
|
|
|
46 |
def generate_synthetic_data(description, columns):
|
47 |
try:
|
48 |
# Format the prompt
|
49 |
formatted_prompt = format_prompt(description, columns)
|
50 |
|
51 |
-
# Send a POST request to the
|
52 |
headers = {
|
53 |
"Authorization": f"Bearer {hf_token}",
|
54 |
"Content-Type": "application/json"
|
@@ -68,13 +73,14 @@ def generate_synthetic_data(description, columns):
|
|
68 |
return f"Error: {response.status_code}, {response.text}"
|
69 |
|
70 |
# Extract the generated text from the response
|
71 |
-
generated_text = response.json()[
|
72 |
return generated_text
|
73 |
|
74 |
except Exception as e:
|
75 |
print(f"Error in generate_synthetic_data: {e}")
|
76 |
return f"Error: {e}"
|
77 |
|
|
|
78 |
def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
|
79 |
data_frames = []
|
80 |
num_iterations = num_rows // rows_per_generation
|
|
|
11 |
raise ValueError("Hugging Face API token is not set. Please set the HF_API_TOKEN environment variable.")
|
12 |
|
13 |
# Set the inference endpoint URL
|
14 |
+
|
15 |
|
16 |
# Define your prompt template
|
17 |
prompt_template = """\
|
|
|
43 |
prompt = prompt_template.format(description=processed_description, columns=",".join(columns))
|
44 |
return prompt
|
45 |
|
46 |
+
import requests
|
47 |
+
|
48 |
+
# Define your Streamlit Space inference URL
|
49 |
+
inference_endpoint = "https://yakine-llama31.hf.space/predict"
|
50 |
+
|
51 |
def generate_synthetic_data(description, columns):
|
52 |
try:
|
53 |
# Format the prompt
|
54 |
formatted_prompt = format_prompt(description, columns)
|
55 |
|
56 |
+
# Send a POST request to the Streamlit Space API
|
57 |
headers = {
|
58 |
"Authorization": f"Bearer {hf_token}",
|
59 |
"Content-Type": "application/json"
|
|
|
73 |
return f"Error: {response.status_code}, {response.text}"
|
74 |
|
75 |
# Extract the generated text from the response
|
76 |
+
generated_text = response.json()['data'] # Adjust based on your Streamlit Space response structure
|
77 |
return generated_text
|
78 |
|
79 |
except Exception as e:
|
80 |
print(f"Error in generate_synthetic_data: {e}")
|
81 |
return f"Error: {e}"
|
82 |
|
83 |
+
|
84 |
def generate_large_synthetic_data(description, columns, num_rows=1000, rows_per_generation=100):
|
85 |
data_frames = []
|
86 |
num_iterations = num_rows // rows_per_generation
|