Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,85 +1,104 @@
|
|
1 |
-
import numpy as np
|
2 |
import torch
|
3 |
import torchvision.transforms as T
|
4 |
-
from decord import VideoReader, cpu
|
5 |
from PIL import Image
|
6 |
-
from
|
7 |
-
from transformers import AutoModel, AutoTokenizer
|
8 |
-
|
9 |
-
|
10 |
-
from io import BytesIO
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
# Device Configuration
|
16 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
|
|
|
18 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
19 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
20 |
|
21 |
def build_transform(input_size):
|
22 |
-
|
|
|
|
|
23 |
transform = T.Compose([
|
24 |
-
T.Lambda(lambda img: img.convert(
|
25 |
-
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
26 |
T.ToTensor(),
|
27 |
-
T.Normalize(mean=
|
28 |
])
|
29 |
return transform
|
30 |
|
31 |
-
def
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
for i in range(target_ratios[0][0] * target_ratios[0][1]):
|
45 |
-
box = (
|
46 |
-
(i % (target_width // image_size)) * image_size,
|
47 |
-
(i // (target_width // image_size)) * image_size,
|
48 |
-
((i % (target_width // image_size)) + 1) * image_size,
|
49 |
-
((i // (target_width // image_size)) + 1) * image_size
|
50 |
-
)
|
51 |
-
split_img = resized_img.crop(box)
|
52 |
-
processed_images.append(split_img)
|
53 |
-
if use_thumbnail and len(processed_images) != 1:
|
54 |
-
thumbnail_img = image.resize((image_size, image_size))
|
55 |
-
processed_images.append(thumbnail_img)
|
56 |
-
return processed_images
|
57 |
-
|
58 |
-
def load_image(image_file: BytesIO, input_size=448, max_num=12):
|
59 |
-
image = Image.open(image_file).convert('RGB')
|
60 |
-
transform = build_transform(input_size=input_size)
|
61 |
-
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
62 |
-
pixel_values = [transform(image) for image in images]
|
63 |
-
pixel_values = torch.stack(pixel_values).to(device)
|
64 |
-
return pixel_values
|
65 |
-
|
66 |
-
# Load Model
|
67 |
-
path = 'OpenGVLab/InternVL2_5-1B'
|
68 |
model = AutoModel.from_pretrained(
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import torchvision.transforms as T
|
|
|
3 |
from PIL import Image
|
4 |
+
from threading import Thread
|
5 |
+
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer
|
6 |
+
import gradio as gr
|
7 |
+
import logging
|
|
|
8 |
|
9 |
+
# Setup logging
|
10 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
|
|
|
|
|
11 |
|
12 |
+
# ImageNet normalization values
|
13 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
14 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
15 |
|
16 |
def build_transform(input_size):
|
17 |
+
"""
|
18 |
+
Build preprocessing pipeline for images.
|
19 |
+
"""
|
20 |
transform = T.Compose([
|
21 |
+
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
|
22 |
+
T.Resize((input_size, input_size), interpolation=T.InterpolationMode.BICUBIC),
|
23 |
T.ToTensor(),
|
24 |
+
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD),
|
25 |
])
|
26 |
return transform
|
27 |
|
28 |
+
def preprocess_image(image, input_size=448):
|
29 |
+
"""
|
30 |
+
Preprocess the image to the required format.
|
31 |
+
"""
|
32 |
+
logging.info("Starting image preprocessing...")
|
33 |
+
transform = build_transform(input_size)
|
34 |
+
tensor_image = transform(image).unsqueeze(0) # Add batch dimension
|
35 |
+
logging.info(f"Image preprocessed. Shape: {tensor_image.shape}")
|
36 |
+
return tensor_image
|
37 |
+
|
38 |
+
# Load the model and tokenizer
|
39 |
+
logging.info("Loading model from Hugging Face Hub...")
|
40 |
+
model_path = "OpenGVLab/InternVL2_5-1B" # Use Hugging Face model path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
model = AutoModel.from_pretrained(
|
42 |
+
model_path,
|
43 |
+
torch_dtype=torch.bfloat16,
|
44 |
+
trust_remote_code=True,
|
45 |
+
).eval()
|
46 |
+
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
|
48 |
+
|
49 |
+
# Add the `<image>` token if missing
|
50 |
+
if "<image>" not in tokenizer.get_vocab():
|
51 |
+
tokenizer.add_tokens(["<image>"])
|
52 |
+
logging.info("Added `<image>` token to tokenizer vocabulary.")
|
53 |
+
model.resize_token_embeddings(len(tokenizer)) # Resize model embeddings
|
54 |
+
|
55 |
+
assert "<image>" in tokenizer.get_vocab(), "Error: `<image>` token is missing from tokenizer vocabulary."
|
56 |
+
|
57 |
+
def describe_image(image):
|
58 |
+
"""
|
59 |
+
Generate a description for the uploaded image with streamed output.
|
60 |
+
"""
|
61 |
+
try:
|
62 |
+
logging.info("Processing uploaded image...")
|
63 |
+
pixel_values = preprocess_image(image, input_size=448).to(torch.bfloat16)
|
64 |
+
|
65 |
+
prompt = "<image>\nExtract text from the image, respond with only the extracted text."
|
66 |
+
logging.info(f"Prompt: {prompt}")
|
67 |
+
|
68 |
+
# Streamer for live text output
|
69 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
|
70 |
+
generation_config = dict(max_new_tokens=512, do_sample=True, streamer=streamer)
|
71 |
+
|
72 |
+
logging.info("Starting model inference...")
|
73 |
+
thread = Thread(target=model.chat, kwargs=dict(
|
74 |
+
tokenizer=tokenizer, pixel_values=pixel_values, question=prompt,
|
75 |
+
history=None, return_history=False, generation_config=generation_config,
|
76 |
+
))
|
77 |
+
thread.start()
|
78 |
+
|
79 |
+
generated_text = ''
|
80 |
+
for new_text in streamer:
|
81 |
+
if new_text == model.conv_template.sep:
|
82 |
+
break
|
83 |
+
generated_text += new_text
|
84 |
+
yield new_text # Stream each chunk
|
85 |
+
|
86 |
+
logging.info("Inference complete.")
|
87 |
+
except Exception as e:
|
88 |
+
logging.error(f"Error during processing: {e}")
|
89 |
+
yield f"Error: {e}"
|
90 |
+
|
91 |
+
# Gradio Interface
|
92 |
+
logging.info("Setting up Gradio interface...")
|
93 |
+
interface = gr.Interface(
|
94 |
+
fn=describe_image,
|
95 |
+
inputs=gr.Image(type="pil"),
|
96 |
+
outputs=gr.Textbox(label="Extracted Text", lines=10, interactive=False),
|
97 |
+
title="Image to Text",
|
98 |
+
description="Upload an image to extract text using the pretrained model.",
|
99 |
+
live=True, # Enables live streaming output
|
100 |
+
)
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
+
logging.info("Launching Gradio interface...")
|
104 |
+
interface.launch(server_name="0.0.0.0", server_port=7860)
|