henry
commited on
Commit
·
da64fee
1
Parent(s):
e928f20
hi
Browse files- Run_Model.py +62 -0
- requirements.txt +3 -0
- run_webUI.py +245 -0
Run_Model.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
|
5 |
+
# 可调参数,建议在文本生成时设置为较高值
|
6 |
+
TOP_P = 0.9 # Top-p (nucleus sampling),范围0到1
|
7 |
+
TOP_K = 80 # Top-k 采样的K值
|
8 |
+
TEMPERATURE = 0.3 # 温度参数,控制生成文本的随机性
|
9 |
+
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
|
12 |
+
# 获取当前脚本目录,亦可改为绝对路径
|
13 |
+
current_directory = os.path.dirname(os.path.abspath(__file__))
|
14 |
+
|
15 |
+
# 加载模型和分词器
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(
|
17 |
+
current_directory,
|
18 |
+
torch_dtype="auto",
|
19 |
+
device_map="auto"
|
20 |
+
)
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(current_directory)
|
22 |
+
|
23 |
+
# 系统指令(建议为空)
|
24 |
+
messages = [
|
25 |
+
{"role": "system", "content": ""}
|
26 |
+
]
|
27 |
+
|
28 |
+
while True:
|
29 |
+
# 获取用户输入
|
30 |
+
user_input = input("User: ").strip()
|
31 |
+
|
32 |
+
# 添加用户输入到对话
|
33 |
+
messages.append({"role": "user", "content": user_input})
|
34 |
+
|
35 |
+
# 准备输入文本
|
36 |
+
text = tokenizer.apply_chat_template(
|
37 |
+
messages,
|
38 |
+
tokenize=False,
|
39 |
+
add_generation_prompt=True
|
40 |
+
)
|
41 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
42 |
+
|
43 |
+
# 生成响应
|
44 |
+
generated_ids = model.generate(
|
45 |
+
model_inputs.input_ids,
|
46 |
+
max_new_tokens=512,
|
47 |
+
top_p=TOP_P,
|
48 |
+
top_k=TOP_K,
|
49 |
+
temperature=TEMPERATURE,
|
50 |
+
do_sample=True,
|
51 |
+
pad_token_id=tokenizer.eos_token_id # 避免警告
|
52 |
+
)
|
53 |
+
generated_ids = [
|
54 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
55 |
+
]
|
56 |
+
|
57 |
+
# 解码并打印响应
|
58 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
59 |
+
print(f"Assistant: {response}")
|
60 |
+
|
61 |
+
# 将生成的响应添加到对话中
|
62 |
+
messages.append({"role": "assistant", "content": response})
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers>=4.44.2
|
3 |
+
gradio>=4.44.0
|
run_webUI.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
3 |
+
from transformers.trainer_utils import set_seed
|
4 |
+
from threading import Thread
|
5 |
+
import random
|
6 |
+
import os
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
# 默认参数
|
10 |
+
DEFAULT_TOP_P = 0.9 # Top-p (nucleus sampling) 范围在0到1之间
|
11 |
+
DEFAULT_TOP_K = 80 # Top-k 采样的K值
|
12 |
+
DEFAULT_TEMPERATURE = 0.3 # 温度参数,控制生成文本的随机性
|
13 |
+
DEFAULT_MAX_NEW_TOKENS = 512 # 生成的最大新令牌数
|
14 |
+
DEFAULT_SYSTEM_MESSAGE = "" # 默认系统消息
|
15 |
+
|
16 |
+
# 检查是否有可用的 GPU,默认使用 GPU,如果不可用则使用 CPU
|
17 |
+
if torch.cuda.is_available():
|
18 |
+
DEVICE = "cuda"
|
19 |
+
cpu_only = False
|
20 |
+
print("检测到 GPU,使用 GPU 进行推理。")
|
21 |
+
else:
|
22 |
+
DEVICE = "cpu"
|
23 |
+
cpu_only = True
|
24 |
+
print("未检测到 GPU,使用 CPU 进行推理。")
|
25 |
+
|
26 |
+
DEFAULT_CKPT_PATH = os.path.dirname(os.path.abspath(__file__))
|
27 |
+
|
28 |
+
def _load_model_tokenizer(checkpoint_path, cpu_only):
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, resume_download=True)
|
30 |
+
|
31 |
+
device_map = "cpu" if cpu_only else "auto"
|
32 |
+
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(
|
34 |
+
checkpoint_path,
|
35 |
+
torch_dtype=torch.float16 if not cpu_only else torch.float32, # 使用更低的精度以节省显存
|
36 |
+
device_map=device_map,
|
37 |
+
resume_download=True,
|
38 |
+
).eval()
|
39 |
+
|
40 |
+
# 如果使用 GPU,确保模型使用半精度以节省显存(如果模型支持)
|
41 |
+
if not cpu_only and torch.cuda.is_available():
|
42 |
+
try:
|
43 |
+
model.half()
|
44 |
+
print("模型已切换为半精度(float16)。")
|
45 |
+
except:
|
46 |
+
print("无法切换模型为半精度,继续使用默认精度。")
|
47 |
+
|
48 |
+
model.generation_config.max_new_tokens = DEFAULT_MAX_NEW_TOKENS # 设置生成的最大新令牌数
|
49 |
+
|
50 |
+
return model, tokenizer
|
51 |
+
|
52 |
+
def _chat_stream(model, tokenizer, query, history, system_message, top_p, top_k, temperature, max_new_tokens):
|
53 |
+
conversation = [
|
54 |
+
{'role': 'system', 'content': system_message},
|
55 |
+
]
|
56 |
+
for query_h, response_h in history:
|
57 |
+
conversation.append({'role': 'user', 'content': query_h})
|
58 |
+
conversation.append({'role': 'assistant', 'content': response_h})
|
59 |
+
conversation.append({'role': 'user', 'content': query})
|
60 |
+
|
61 |
+
# 准备输入
|
62 |
+
try:
|
63 |
+
# 尝试使用 apply_chat_template 方法
|
64 |
+
text = tokenizer.apply_chat_template(
|
65 |
+
conversation,
|
66 |
+
tokenize=False, # 确保返回的是字符串
|
67 |
+
add_generation_prompt=True
|
68 |
+
)
|
69 |
+
except AttributeError:
|
70 |
+
# 如果没有 apply_chat_template 方法,使用标准方法构建对话
|
71 |
+
print("[WARNING] `apply_chat_template` 方法不存在,使用标准对话格式。")
|
72 |
+
text = "\n".join([f"{msg['role'].capitalize()}: {msg['content']}" for msg in conversation])
|
73 |
+
text += "\nAssistant:"
|
74 |
+
|
75 |
+
# 确保 text 是字符串
|
76 |
+
if not isinstance(text, str):
|
77 |
+
raise ValueError("apply_chat_template 应返回字符串类型的文本。")
|
78 |
+
|
79 |
+
# Tokenize 输入
|
80 |
+
inputs = tokenizer(text, return_tensors="pt").to(DEVICE)
|
81 |
+
|
82 |
+
streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, timeout=60.0, skip_special_tokens=True)
|
83 |
+
|
84 |
+
# 生成参数
|
85 |
+
generation_kwargs = dict(
|
86 |
+
input_ids=inputs["input_ids"],
|
87 |
+
max_new_tokens=max_new_tokens,
|
88 |
+
top_p=top_p,
|
89 |
+
top_k=top_k,
|
90 |
+
temperature=temperature,
|
91 |
+
do_sample=True, # 确保使用采样方法
|
92 |
+
pad_token_id=tokenizer.eos_token_id, # 避免警告
|
93 |
+
streamer=streamer,
|
94 |
+
)
|
95 |
+
|
96 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
97 |
+
thread.start()
|
98 |
+
|
99 |
+
generated_text = ""
|
100 |
+
for new_text in streamer:
|
101 |
+
generated_text += new_text
|
102 |
+
yield new_text
|
103 |
+
return generated_text
|
104 |
+
|
105 |
+
def initialize_model():
|
106 |
+
checkpoint_path = DEFAULT_CKPT_PATH
|
107 |
+
seed = random.randint(0, 2**32 - 1) # 随机生成一个种子
|
108 |
+
set_seed(seed) # 设置随机种子
|
109 |
+
|
110 |
+
model, tokenizer = _load_model_tokenizer(checkpoint_path, cpu_only)
|
111 |
+
|
112 |
+
return model, tokenizer
|
113 |
+
|
114 |
+
# 初始化模型和分词器
|
115 |
+
model, tokenizer = initialize_model()
|
116 |
+
|
117 |
+
def chat_interface(user_input, history, system_message, top_p, top_k, temperature, max_new_tokens):
|
118 |
+
if user_input.strip() == "":
|
119 |
+
yield history, history, system_message, ""
|
120 |
+
return
|
121 |
+
|
122 |
+
# 创建一个新的助手回复条目,初始为空
|
123 |
+
history.append((user_input, ""))
|
124 |
+
yield history, history, system_message, "" # 更新 Chatbot 组件和状态
|
125 |
+
|
126 |
+
# 获取模型生成的回复
|
127 |
+
generator = _chat_stream(model, tokenizer, user_input, history[:-1], system_message, top_p, top_k, temperature, max_new_tokens)
|
128 |
+
assistant_reply = ""
|
129 |
+
for new_text in generator:
|
130 |
+
assistant_reply += new_text
|
131 |
+
# 更新最后一条助手回复
|
132 |
+
updated_history = history.copy()
|
133 |
+
updated_history[-1] = (user_input, assistant_reply)
|
134 |
+
yield updated_history, updated_history, system_message, "" # 更新 Chatbot 组件和状态
|
135 |
+
|
136 |
+
def clear_history():
|
137 |
+
return [], [], DEFAULT_SYSTEM_MESSAGE, ""
|
138 |
+
|
139 |
+
# Gradio 接口
|
140 |
+
with gr.Blocks() as demo:
|
141 |
+
# CSS
|
142 |
+
gr.HTML("""
|
143 |
+
<style>
|
144 |
+
#chat-container {
|
145 |
+
height: 500px;
|
146 |
+
overflow-y: auto;
|
147 |
+
}
|
148 |
+
.settings-column {
|
149 |
+
padding-left: 20px;
|
150 |
+
border-left: 1px solid #ddd;
|
151 |
+
}
|
152 |
+
.send-button {
|
153 |
+
margin-top: 10px;
|
154 |
+
width: 100%;
|
155 |
+
}
|
156 |
+
</style>
|
157 |
+
""")
|
158 |
+
|
159 |
+
gr.Markdown("# Qwen2.5 Sex")
|
160 |
+
|
161 |
+
with gr.Row():
|
162 |
+
# 左侧栏:聊天记录和用户输入
|
163 |
+
with gr.Column(scale=3):
|
164 |
+
chatbot = gr.Chatbot(elem_id="chat-container")
|
165 |
+
user_input = gr.Textbox(
|
166 |
+
show_label=False,
|
167 |
+
placeholder="输入你的问题...",
|
168 |
+
lines=2,
|
169 |
+
interactive=True
|
170 |
+
)
|
171 |
+
send_btn = gr.Button("发送", elem_classes=["send-button"])
|
172 |
+
|
173 |
+
# 右侧栏:清空历史按钮、系统消息输入框和生成参数滑块
|
174 |
+
with gr.Column(scale=1, elem_classes=["settings-column"]):
|
175 |
+
gr.Markdown("### 设置")
|
176 |
+
clear_btn = gr.Button("清空历史")
|
177 |
+
gr.Markdown("#### 系统消息")
|
178 |
+
system_message = gr.Textbox(
|
179 |
+
label="系统消息",
|
180 |
+
value=DEFAULT_SYSTEM_MESSAGE,
|
181 |
+
placeholder="输入系统消息...",
|
182 |
+
lines=2
|
183 |
+
)
|
184 |
+
gr.Markdown("#### 生成参数")
|
185 |
+
top_p_slider = gr.Slider(
|
186 |
+
minimum=0.1, maximum=1.0, value=DEFAULT_TOP_P, step=0.05,
|
187 |
+
label="Top-p (nucleus sampling)"
|
188 |
+
)
|
189 |
+
top_k_slider = gr.Slider(
|
190 |
+
minimum=0, maximum=100, value=DEFAULT_TOP_K, step=1,
|
191 |
+
label="Top-k"
|
192 |
+
)
|
193 |
+
temperature_slider = gr.Slider(
|
194 |
+
minimum=0.1, maximum=1.5, value=DEFAULT_TEMPERATURE, step=0.05,
|
195 |
+
label="Temperature"
|
196 |
+
)
|
197 |
+
max_new_tokens_slider = gr.Slider(
|
198 |
+
minimum=50, maximum=2048, value=DEFAULT_MAX_NEW_TOKENS, step=2,
|
199 |
+
label="Max New Tokens"
|
200 |
+
)
|
201 |
+
|
202 |
+
# 状态管理
|
203 |
+
state = gr.State([])
|
204 |
+
|
205 |
+
# 绑定事件
|
206 |
+
# 回车chat_interface
|
207 |
+
user_input.submit(
|
208 |
+
chat_interface,
|
209 |
+
inputs=[user_input, state, system_message, top_p_slider, top_k_slider, temperature_slider, max_new_tokens_slider],
|
210 |
+
outputs=[chatbot, state, system_message, user_input],
|
211 |
+
queue=True
|
212 |
+
)
|
213 |
+
# 发送chat_interface
|
214 |
+
send_btn.click(
|
215 |
+
chat_interface,
|
216 |
+
inputs=[user_input, state, system_message, top_p_slider, top_k_slider, temperature_slider, max_new_tokens_slider],
|
217 |
+
outputs=[chatbot, state, system_message, user_input],
|
218 |
+
queue=True
|
219 |
+
)
|
220 |
+
clear_btn.click(
|
221 |
+
clear_history,
|
222 |
+
inputs=None,
|
223 |
+
outputs=[chatbot, state, system_message, user_input],
|
224 |
+
queue=True
|
225 |
+
)
|
226 |
+
|
227 |
+
# JS
|
228 |
+
gr.HTML("""
|
229 |
+
<script>
|
230 |
+
function scrollChat() {
|
231 |
+
const chatContainer = document.getElementById('chat-container');
|
232 |
+
if(chatContainer) {
|
233 |
+
chatContainer.scrollTop = chatContainer.scrollHeight;
|
234 |
+
}
|
235 |
+
}
|
236 |
+
|
237 |
+
const observer = new MutationObserver(scrollChat);
|
238 |
+
const chatContainer = document.getElementById('chat-container');
|
239 |
+
if(chatContainer) {
|
240 |
+
observer.observe(chatContainer, { childList: true, subtree: true });
|
241 |
+
}
|
242 |
+
</script>
|
243 |
+
""")
|
244 |
+
|
245 |
+
demo.launch()
|