henry commited on
Commit
da64fee
·
1 Parent(s): e928f20
Files changed (3) hide show
  1. Run_Model.py +62 -0
  2. requirements.txt +3 -0
  3. run_webUI.py +245 -0
Run_Model.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+ import torch
3
+ import os
4
+
5
+ # 可调参数,建议在文本生成时设置为较高值
6
+ TOP_P = 0.9 # Top-p (nucleus sampling),范围0到1
7
+ TOP_K = 80 # Top-k 采样的K值
8
+ TEMPERATURE = 0.3 # 温度参数,控制生成文本的随机性
9
+
10
+ device = "cuda" if torch.cuda.is_available() else "cpu"
11
+
12
+ # 获取当前脚本目录,亦可改为绝对路径
13
+ current_directory = os.path.dirname(os.path.abspath(__file__))
14
+
15
+ # 加载模型和分词器
16
+ model = AutoModelForCausalLM.from_pretrained(
17
+ current_directory,
18
+ torch_dtype="auto",
19
+ device_map="auto"
20
+ )
21
+ tokenizer = AutoTokenizer.from_pretrained(current_directory)
22
+
23
+ # 系统指令(建议为空)
24
+ messages = [
25
+ {"role": "system", "content": ""}
26
+ ]
27
+
28
+ while True:
29
+ # 获取用户输入
30
+ user_input = input("User: ").strip()
31
+
32
+ # 添加用户输入到对话
33
+ messages.append({"role": "user", "content": user_input})
34
+
35
+ # 准备输入文本
36
+ text = tokenizer.apply_chat_template(
37
+ messages,
38
+ tokenize=False,
39
+ add_generation_prompt=True
40
+ )
41
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
42
+
43
+ # 生成响应
44
+ generated_ids = model.generate(
45
+ model_inputs.input_ids,
46
+ max_new_tokens=512,
47
+ top_p=TOP_P,
48
+ top_k=TOP_K,
49
+ temperature=TEMPERATURE,
50
+ do_sample=True,
51
+ pad_token_id=tokenizer.eos_token_id # 避免警告
52
+ )
53
+ generated_ids = [
54
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
55
+ ]
56
+
57
+ # 解码并打印响应
58
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
59
+ print(f"Assistant: {response}")
60
+
61
+ # 将生成的响应添加到对话中
62
+ messages.append({"role": "assistant", "content": response})
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch
2
+ transformers>=4.44.2
3
+ gradio>=4.44.0
run_webUI.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
3
+ from transformers.trainer_utils import set_seed
4
+ from threading import Thread
5
+ import random
6
+ import os
7
+ import gradio as gr
8
+
9
+ # 默认参数
10
+ DEFAULT_TOP_P = 0.9 # Top-p (nucleus sampling) 范围在0到1之间
11
+ DEFAULT_TOP_K = 80 # Top-k 采样的K值
12
+ DEFAULT_TEMPERATURE = 0.3 # 温度参数,控制生成文本的随机性
13
+ DEFAULT_MAX_NEW_TOKENS = 512 # 生成的最大新令牌数
14
+ DEFAULT_SYSTEM_MESSAGE = "" # 默认系统消息
15
+
16
+ # 检查是否有可用的 GPU,默认使用 GPU,如果不可用则使用 CPU
17
+ if torch.cuda.is_available():
18
+ DEVICE = "cuda"
19
+ cpu_only = False
20
+ print("检测到 GPU,使用 GPU 进行推理。")
21
+ else:
22
+ DEVICE = "cpu"
23
+ cpu_only = True
24
+ print("未检测到 GPU,使用 CPU 进行推理。")
25
+
26
+ DEFAULT_CKPT_PATH = os.path.dirname(os.path.abspath(__file__))
27
+
28
+ def _load_model_tokenizer(checkpoint_path, cpu_only):
29
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, resume_download=True)
30
+
31
+ device_map = "cpu" if cpu_only else "auto"
32
+
33
+ model = AutoModelForCausalLM.from_pretrained(
34
+ checkpoint_path,
35
+ torch_dtype=torch.float16 if not cpu_only else torch.float32, # 使用更低的精度以节省显存
36
+ device_map=device_map,
37
+ resume_download=True,
38
+ ).eval()
39
+
40
+ # 如果使用 GPU,确保模型使用半精度以节省显存(如果模型支持)
41
+ if not cpu_only and torch.cuda.is_available():
42
+ try:
43
+ model.half()
44
+ print("模型已切换为半精度(float16)。")
45
+ except:
46
+ print("无法切换模型为半精度,继续使用默认精度。")
47
+
48
+ model.generation_config.max_new_tokens = DEFAULT_MAX_NEW_TOKENS # 设置生成的最大新令牌数
49
+
50
+ return model, tokenizer
51
+
52
+ def _chat_stream(model, tokenizer, query, history, system_message, top_p, top_k, temperature, max_new_tokens):
53
+ conversation = [
54
+ {'role': 'system', 'content': system_message},
55
+ ]
56
+ for query_h, response_h in history:
57
+ conversation.append({'role': 'user', 'content': query_h})
58
+ conversation.append({'role': 'assistant', 'content': response_h})
59
+ conversation.append({'role': 'user', 'content': query})
60
+
61
+ # 准备输入
62
+ try:
63
+ # 尝试使用 apply_chat_template 方法
64
+ text = tokenizer.apply_chat_template(
65
+ conversation,
66
+ tokenize=False, # 确保返回的是字符串
67
+ add_generation_prompt=True
68
+ )
69
+ except AttributeError:
70
+ # 如果没有 apply_chat_template 方法,使用标准方法构建对话
71
+ print("[WARNING] `apply_chat_template` 方法不存在,使用标准对话格式。")
72
+ text = "\n".join([f"{msg['role'].capitalize()}: {msg['content']}" for msg in conversation])
73
+ text += "\nAssistant:"
74
+
75
+ # 确保 text 是字符串
76
+ if not isinstance(text, str):
77
+ raise ValueError("apply_chat_template 应返回字符串类型的文本。")
78
+
79
+ # Tokenize 输入
80
+ inputs = tokenizer(text, return_tensors="pt").to(DEVICE)
81
+
82
+ streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, timeout=60.0, skip_special_tokens=True)
83
+
84
+ # 生成参数
85
+ generation_kwargs = dict(
86
+ input_ids=inputs["input_ids"],
87
+ max_new_tokens=max_new_tokens,
88
+ top_p=top_p,
89
+ top_k=top_k,
90
+ temperature=temperature,
91
+ do_sample=True, # 确保使用采样方法
92
+ pad_token_id=tokenizer.eos_token_id, # 避免警告
93
+ streamer=streamer,
94
+ )
95
+
96
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
97
+ thread.start()
98
+
99
+ generated_text = ""
100
+ for new_text in streamer:
101
+ generated_text += new_text
102
+ yield new_text
103
+ return generated_text
104
+
105
+ def initialize_model():
106
+ checkpoint_path = DEFAULT_CKPT_PATH
107
+ seed = random.randint(0, 2**32 - 1) # 随机生成一个种子
108
+ set_seed(seed) # 设置随机种子
109
+
110
+ model, tokenizer = _load_model_tokenizer(checkpoint_path, cpu_only)
111
+
112
+ return model, tokenizer
113
+
114
+ # 初始化模型和分词器
115
+ model, tokenizer = initialize_model()
116
+
117
+ def chat_interface(user_input, history, system_message, top_p, top_k, temperature, max_new_tokens):
118
+ if user_input.strip() == "":
119
+ yield history, history, system_message, ""
120
+ return
121
+
122
+ # 创建一个新的助手回复条目,初始为空
123
+ history.append((user_input, ""))
124
+ yield history, history, system_message, "" # 更新 Chatbot 组件和状态
125
+
126
+ # 获取模型生成的回复
127
+ generator = _chat_stream(model, tokenizer, user_input, history[:-1], system_message, top_p, top_k, temperature, max_new_tokens)
128
+ assistant_reply = ""
129
+ for new_text in generator:
130
+ assistant_reply += new_text
131
+ # 更新最后一条助手回复
132
+ updated_history = history.copy()
133
+ updated_history[-1] = (user_input, assistant_reply)
134
+ yield updated_history, updated_history, system_message, "" # 更新 Chatbot 组件和状态
135
+
136
+ def clear_history():
137
+ return [], [], DEFAULT_SYSTEM_MESSAGE, ""
138
+
139
+ # Gradio 接口
140
+ with gr.Blocks() as demo:
141
+ # CSS
142
+ gr.HTML("""
143
+ <style>
144
+ #chat-container {
145
+ height: 500px;
146
+ overflow-y: auto;
147
+ }
148
+ .settings-column {
149
+ padding-left: 20px;
150
+ border-left: 1px solid #ddd;
151
+ }
152
+ .send-button {
153
+ margin-top: 10px;
154
+ width: 100%;
155
+ }
156
+ </style>
157
+ """)
158
+
159
+ gr.Markdown("# Qwen2.5 Sex")
160
+
161
+ with gr.Row():
162
+ # 左侧栏:聊天记录和用户输入
163
+ with gr.Column(scale=3):
164
+ chatbot = gr.Chatbot(elem_id="chat-container")
165
+ user_input = gr.Textbox(
166
+ show_label=False,
167
+ placeholder="输入你的问题...",
168
+ lines=2,
169
+ interactive=True
170
+ )
171
+ send_btn = gr.Button("发送", elem_classes=["send-button"])
172
+
173
+ # 右侧栏:清空历史按钮、系统消息输入框和生成参数滑块
174
+ with gr.Column(scale=1, elem_classes=["settings-column"]):
175
+ gr.Markdown("### 设置")
176
+ clear_btn = gr.Button("清空历史")
177
+ gr.Markdown("#### 系统消息")
178
+ system_message = gr.Textbox(
179
+ label="系统消息",
180
+ value=DEFAULT_SYSTEM_MESSAGE,
181
+ placeholder="输入系统消息...",
182
+ lines=2
183
+ )
184
+ gr.Markdown("#### 生成参数")
185
+ top_p_slider = gr.Slider(
186
+ minimum=0.1, maximum=1.0, value=DEFAULT_TOP_P, step=0.05,
187
+ label="Top-p (nucleus sampling)"
188
+ )
189
+ top_k_slider = gr.Slider(
190
+ minimum=0, maximum=100, value=DEFAULT_TOP_K, step=1,
191
+ label="Top-k"
192
+ )
193
+ temperature_slider = gr.Slider(
194
+ minimum=0.1, maximum=1.5, value=DEFAULT_TEMPERATURE, step=0.05,
195
+ label="Temperature"
196
+ )
197
+ max_new_tokens_slider = gr.Slider(
198
+ minimum=50, maximum=2048, value=DEFAULT_MAX_NEW_TOKENS, step=2,
199
+ label="Max New Tokens"
200
+ )
201
+
202
+ # 状态管理
203
+ state = gr.State([])
204
+
205
+ # 绑定事件
206
+ # 回车chat_interface
207
+ user_input.submit(
208
+ chat_interface,
209
+ inputs=[user_input, state, system_message, top_p_slider, top_k_slider, temperature_slider, max_new_tokens_slider],
210
+ outputs=[chatbot, state, system_message, user_input],
211
+ queue=True
212
+ )
213
+ # 发送chat_interface
214
+ send_btn.click(
215
+ chat_interface,
216
+ inputs=[user_input, state, system_message, top_p_slider, top_k_slider, temperature_slider, max_new_tokens_slider],
217
+ outputs=[chatbot, state, system_message, user_input],
218
+ queue=True
219
+ )
220
+ clear_btn.click(
221
+ clear_history,
222
+ inputs=None,
223
+ outputs=[chatbot, state, system_message, user_input],
224
+ queue=True
225
+ )
226
+
227
+ # JS
228
+ gr.HTML("""
229
+ <script>
230
+ function scrollChat() {
231
+ const chatContainer = document.getElementById('chat-container');
232
+ if(chatContainer) {
233
+ chatContainer.scrollTop = chatContainer.scrollHeight;
234
+ }
235
+ }
236
+
237
+ const observer = new MutationObserver(scrollChat);
238
+ const chatContainer = document.getElementById('chat-container');
239
+ if(chatContainer) {
240
+ observer.observe(chatContainer, { childList: true, subtree: true });
241
+ }
242
+ </script>
243
+ """)
244
+
245
+ demo.launch()