xome commited on
Commit
ec685e8
·
verified ·
1 Parent(s): a5cb287

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +149 -0
app.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ import numpy as np
4
+ import random
5
+ import spaces
6
+ import torch
7
+ from diffusers import SanaSprintPipeline
8
+
9
+ dtype = torch.bfloat16
10
+ device = "cuda" if torch.cuda.is_available() else "cpu"
11
+
12
+ pipe = SanaSprintPipeline.from_pretrained(
13
+ "Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers",
14
+ torch_dtype=torch.bfloat16
15
+ )
16
+ pipe2 = SanaSprintPipeline.from_pretrained(
17
+ "Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers",
18
+ torch_dtype=torch.bfloat16
19
+ )
20
+ pipe.to(device)
21
+ pipe2.to(device)
22
+ MAX_SEED = np.iinfo(np.int32).max
23
+ MAX_IMAGE_SIZE = 1024
24
+
25
+ @spaces.GPU(duration=5)
26
+ def infer(prompt, model_size, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=4.5, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
27
+ if randomize_seed:
28
+ seed = random.randint(0, MAX_SEED)
29
+ generator = torch.Generator().manual_seed(seed)
30
+
31
+ # Choose the appropriate model based on selected model size
32
+ selected_pipe = pipe if model_size == "0.6B" else pipe2
33
+
34
+ img = selected_pipe(
35
+ prompt=prompt,
36
+ guidance_scale=guidance_scale,
37
+ num_inference_steps=num_inference_steps,
38
+ width=width,
39
+ height=height,
40
+ generator=generator,
41
+ output_type="pil"
42
+ )
43
+ print(img)
44
+ return img.images[0], seed
45
+
46
+ examples = [
47
+ ["a tiny astronaut hatching from an egg on the moon", "1.6B"],
48
+ ["🐶 Wearing 🕶 flying on the 🌈", "1.6B"],
49
+ ["an anime illustration of a wiener schnitzel", "0.6B"],
50
+ ["a photorealistic landscape of mountains at sunset", "0.6B"],
51
+ ]
52
+
53
+ css="""
54
+ #col-container {
55
+ margin: 0 auto;
56
+ max-width: 520px;
57
+ }
58
+ """
59
+
60
+ with gr.Blocks(css=css) as demo:
61
+
62
+ with gr.Column(elem_id="col-container"):
63
+ gr.Markdown(f"""# Sana Sprint""")
64
+ gr.Markdown("Demo for the real-time [Sana Sprint](https://huggingface.co/collections/Efficient-Large-Model/sana-sprint-67d6810d65235085b3b17c76) model")
65
+ with gr.Row():
66
+
67
+ prompt = gr.Text(
68
+ label="Prompt",
69
+ show_label=False,
70
+ max_lines=1,
71
+ placeholder="Enter your prompt",
72
+ container=False,
73
+ )
74
+
75
+ run_button = gr.Button("Run", scale=0)
76
+
77
+ result = gr.Image(label="Result", show_label=False)
78
+
79
+ model_size = gr.Radio(
80
+ label="Model Size",
81
+ choices=["0.6B", "1.6B"],
82
+ value="1.6B",
83
+ interactive=True
84
+ )
85
+
86
+ with gr.Accordion("Advanced Settings", open=False):
87
+
88
+ seed = gr.Slider(
89
+ label="Seed",
90
+ minimum=0,
91
+ maximum=MAX_SEED,
92
+ step=1,
93
+ value=0,
94
+ )
95
+
96
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
97
+
98
+ with gr.Row():
99
+
100
+ width = gr.Slider(
101
+ label="Width",
102
+ minimum=256,
103
+ maximum=MAX_IMAGE_SIZE,
104
+ step=32,
105
+ value=1024,
106
+ )
107
+
108
+ height = gr.Slider(
109
+ label="Height",
110
+ minimum=256,
111
+ maximum=MAX_IMAGE_SIZE,
112
+ step=32,
113
+ value=1024,
114
+ )
115
+
116
+ with gr.Row():
117
+
118
+ guidance_scale = gr.Slider(
119
+ label="Guidance Scale",
120
+ minimum=1,
121
+ maximum=15,
122
+ step=0.1,
123
+ value=4.5,
124
+ )
125
+
126
+ num_inference_steps = gr.Slider(
127
+ label="Number of inference steps",
128
+ minimum=1,
129
+ maximum=50,
130
+ step=1,
131
+ value=2,
132
+ )
133
+
134
+ gr.Examples(
135
+ examples = examples,
136
+ fn = infer,
137
+ inputs = [prompt, model_size], # Add model_size to inputs
138
+ outputs = [result, seed],
139
+ cache_examples="lazy"
140
+ )
141
+
142
+ gr.on(
143
+ triggers=[run_button.click, prompt.submit],
144
+ fn = infer,
145
+ inputs = [prompt, model_size, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], # Add model_size to inputs
146
+ outputs = [result, seed]
147
+ )
148
+
149
+ demo.launch()