|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from abc import ABC, abstractmethod |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union |
|
|
|
from ..utils import is_torch_available |
|
from ..utils.quantization_config import QuantizationConfigMixin |
|
|
|
|
|
if TYPE_CHECKING: |
|
from ..modeling_utils import PreTrainedModel |
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
|
|
class HfQuantizer(ABC): |
|
""" |
|
Abstract class of the HuggingFace quantizer. Supports for now quantizing HF transformers models for inference and/or quantization. |
|
This class is used only for transformers.PreTrainedModel.from_pretrained and cannot be easily used outside the scope of that method |
|
yet. |
|
|
|
Attributes |
|
quantization_config (`transformers.utils.quantization_config.QuantizationConfigMixin`): |
|
The quantization config that defines the quantization parameters of your model that you want to quantize. |
|
modules_to_not_convert (`List[str]`, *optional*): |
|
The list of module names to not convert when quantizing the model. |
|
required_packages (`List[str]`, *optional*): |
|
The list of required pip packages to install prior to using the quantizer |
|
requires_calibration (`bool`): |
|
Whether the quantization method requires to calibrate the model before using it. |
|
requires_parameters_quantization (`bool`): |
|
Whether the quantization method requires to create a new Parameter. For example, for bitsandbytes, it is |
|
required to create a new xxxParameter in order to properly quantize the model. |
|
""" |
|
|
|
requires_calibration = False |
|
required_packages = None |
|
requires_parameters_quantization = False |
|
|
|
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): |
|
self.quantization_config = quantization_config |
|
|
|
|
|
self.modules_to_not_convert = kwargs.pop("modules_to_not_convert", []) |
|
self.pre_quantized = kwargs.pop("pre_quantized", True) |
|
|
|
if not self.pre_quantized and self.requires_calibration: |
|
raise ValueError( |
|
f"The quantization method {quantization_config.quant_method} does require the model to be pre-quantized." |
|
f" You explicitly passed `pre_quantized=False` meaning your model weights are not quantized. Make sure to " |
|
f"pass `pre_quantized=True` while knowing what you are doing." |
|
) |
|
|
|
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": |
|
""" |
|
Some quantization methods require to explicitly set the dtype of the model to a |
|
target dtype. You need to override this method in case you want to make sure that behavior is |
|
preserved |
|
|
|
Args: |
|
torch_dtype (`torch.dtype`): |
|
The input dtype that is passed in `from_pretrained` |
|
""" |
|
return torch_dtype |
|
|
|
def update_device_map(self, device_map: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]: |
|
""" |
|
Override this method if you want to pass a override the existing device map with a new |
|
one. E.g. for bitsandbytes, since `accelerate` is a hard requirement, if no device_map is |
|
passed, the device_map is set to `"auto"`` |
|
|
|
Args: |
|
device_map (`Union[dict, str]`, *optional*): |
|
The device_map that is passed through the `from_pretrained` method. |
|
""" |
|
return device_map |
|
|
|
def adjust_target_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": |
|
""" |
|
Override this method if you want to adjust the `target_dtype` variable used in `from_pretrained` |
|
to compute the device_map in case the device_map is a `str`. E.g. for bitsandbytes we force-set `target_dtype` |
|
to `torch.int8` and for 4-bit we pass a custom enum `accelerate.CustomDtype.int4`. |
|
|
|
Args: |
|
torch_dtype (`torch.dtype`, *optional*): |
|
The torch_dtype that is used to compute the device_map. |
|
""" |
|
return torch_dtype |
|
|
|
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: |
|
""" |
|
Override this method if you want to adjust the `missing_keys`. |
|
|
|
Args: |
|
missing_keys (`List[str]`, *optional*): |
|
The list of missing keys in the checkpoint compared to the state dict of the model |
|
""" |
|
return missing_keys |
|
|
|
def get_special_dtypes_update(self, model, torch_dtype: "torch.dtype") -> Dict[str, "torch.dtype"]: |
|
""" |
|
returns dtypes for modules that are not quantized - used for the computation of the device_map in case |
|
one passes a str as a device_map. The method will use the `modules_to_not_convert` that is modified |
|
in `_process_model_before_weight_loading`. |
|
|
|
Args: |
|
model (`~transformers.PreTrainedModel`): |
|
The model to quantize |
|
torch_dtype (`torch.dtype`): |
|
The dtype passed in `from_pretrained` method. |
|
""" |
|
|
|
return { |
|
name: torch_dtype |
|
for name, _ in model.named_parameters() |
|
if any(m in name for m in self.modules_to_not_convert) |
|
} |
|
|
|
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: |
|
"""adjust max_memory argument for infer_auto_device_map() if extra memory is needed for quantization""" |
|
return max_memory |
|
|
|
def check_quantized_param( |
|
self, |
|
model: "PreTrainedModel", |
|
param_value: "torch.Tensor", |
|
param_name: str, |
|
state_dict: Dict[str, Any], |
|
**kwargs, |
|
) -> bool: |
|
""" |
|
checks if a loaded state_dict component is part of quantized param + some validation; only defined if |
|
requires_parameters_quantization == True for quantization methods that require to create a new parameters |
|
for quantization. |
|
""" |
|
return False |
|
|
|
def create_quantized_param(self, *args, **kwargs) -> "torch.nn.Parameter": |
|
""" |
|
takes needed components from state_dict and creates quantized param; only applicable if |
|
requires_parameters_quantization == True |
|
""" |
|
if not self.requires_parameters_quantization: |
|
raise AttributeError( |
|
f"`.create_quantized_param()` method is not supported by quantizer class {self.__class__.__name__}." |
|
) |
|
|
|
def validate_environment(self, *args, **kwargs): |
|
""" |
|
This method is used to potentially check for potential conflicts with arguments that are |
|
passed in `from_pretrained`. You need to define it for all future quantizers that are integrated with transformers. |
|
If no explicit check are needed, simply return nothing. |
|
""" |
|
return |
|
|
|
def preprocess_model(self, model: "PreTrainedModel", **kwargs): |
|
""" |
|
Setting model attributes and/or converting model before weights loading. At this point |
|
the model should be initialized on the meta device so you can freely manipulate the skeleton |
|
of the model in order to replace modules in-place. Make sure to override the abstract method `_process_model_before_weight_loading`. |
|
|
|
Args: |
|
model (`~transformers.PreTrainedModel`): |
|
The model to quantize |
|
kwargs (`dict`, *optional*): |
|
The keyword arguments that are passed along `_process_model_before_weight_loading`. |
|
""" |
|
model.is_quantized = True |
|
model.quantization_method = self.quantization_config.quant_method |
|
return self._process_model_before_weight_loading(model, **kwargs) |
|
|
|
def postprocess_model(self, model: "PreTrainedModel", **kwargs): |
|
""" |
|
Post-process the model post weights loading. |
|
Make sure to override the abstract method `_process_model_after_weight_loading`. |
|
|
|
Args: |
|
model (`~transformers.PreTrainedModel`): |
|
The model to quantize |
|
kwargs (`dict`, *optional*): |
|
The keyword arguments that are passed along `_process_model_after_weight_loading`. |
|
""" |
|
return self._process_model_after_weight_loading(model, **kwargs) |
|
|
|
@abstractmethod |
|
def _process_model_before_weight_loading(self, model, **kwargs): |
|
... |
|
|
|
@abstractmethod |
|
def _process_model_after_weight_loading(self, model, **kwargs): |
|
... |
|
|
|
@property |
|
@abstractmethod |
|
def is_serializable(self): |
|
... |
|
|
|
@property |
|
@abstractmethod |
|
def is_trainable(self): |
|
... |
|
|