|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"AQLM (Additive Quantization of Language Model) integration file" |
|
|
|
|
|
from ..utils import is_accelerate_available, is_aqlm_available, is_torch_available |
|
|
|
|
|
if is_torch_available(): |
|
import torch.nn as nn |
|
|
|
|
|
def replace_with_aqlm_linear( |
|
model, |
|
quantization_config=None, |
|
linear_weights_not_to_quantize=None, |
|
current_key_name=None, |
|
has_been_replaced=False, |
|
): |
|
""" |
|
Public method that recursively replaces the Linear layers of the given model with AQLM quantized layers. |
|
`accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the |
|
conversion has been successfull or not. |
|
|
|
Args: |
|
model (`torch.nn.Module`): |
|
The model to convert, can be any `torch.nn.Module` instance. |
|
quantization_config (`AqlmConfig`): |
|
The quantization config object that contains the quantization parameters. |
|
linear_weights_not_to_quantize (`list[str]`, *optional*): |
|
A list of nn.Linear weights to not convert. If a parameter path is in the list (e.g. `lm_head.weight`), the corresponding module will not be |
|
converted. |
|
current_key_name (`list`, *optional*): |
|
A list that contains the current key name. This is used for recursion and should not be passed by the user. |
|
has_been_replaced (`bool`, *optional*): |
|
A boolean that indicates if the conversion has been successful or not. This is used for recursion and |
|
should not be passed by the user. |
|
""" |
|
if not is_aqlm_available(): |
|
raise ValueError("AQLM is not available. Please install it with `pip install aqlm[cpu,gpu]`") |
|
|
|
if not is_accelerate_available(): |
|
raise ValueError("AQLM requires Accelerate to be installed: `pip install accelerate`") |
|
|
|
if linear_weights_not_to_quantize is None: |
|
linear_weights_not_to_quantize = [] |
|
|
|
from accelerate import init_empty_weights |
|
from aqlm import QuantizedLinear |
|
|
|
for name, module in model.named_children(): |
|
if current_key_name is None: |
|
current_key_name = [] |
|
current_key_name.append(name) |
|
|
|
if isinstance(module, nn.Linear): |
|
|
|
if ".".join(current_key_name) + ".weight" not in linear_weights_not_to_quantize: |
|
with init_empty_weights(): |
|
in_features = module.in_features |
|
out_features = module.out_features |
|
|
|
model._modules[name] = QuantizedLinear( |
|
in_features, |
|
out_features, |
|
bias=module.bias is not None, |
|
in_group_size=quantization_config.in_group_size, |
|
out_group_size=quantization_config.out_group_size, |
|
num_codebooks=quantization_config.num_codebooks, |
|
nbits_per_codebook=quantization_config.nbits_per_codebook, |
|
) |
|
has_been_replaced = True |
|
|
|
|
|
model._modules[name].source_cls = type(module) |
|
|
|
model._modules[name].requires_grad_(False) |
|
if len(list(module.children())) > 0: |
|
_, has_been_replaced = replace_with_aqlm_linear( |
|
module, |
|
quantization_config=quantization_config, |
|
linear_weights_not_to_quantize=linear_weights_not_to_quantize, |
|
current_key_name=current_key_name, |
|
has_been_replaced=has_been_replaced, |
|
) |
|
|
|
current_key_name.pop(-1) |
|
return model, has_been_replaced |
|
|