Spaces:
Running
Running
import logging | |
from datetime import datetime, timezone | |
from flask import request | |
from flask_login import current_user | |
from flask_restful import Resource, fields, marshal, marshal_with, reqparse | |
from sqlalchemy import asc, desc | |
from werkzeug.exceptions import Forbidden, NotFound | |
import services | |
from controllers.console import api | |
from controllers.console.app.error import ( | |
ProviderModelCurrentlyNotSupportError, | |
ProviderNotInitializeError, | |
ProviderQuotaExceededError, | |
) | |
from controllers.console.datasets.error import ( | |
ArchivedDocumentImmutableError, | |
DocumentAlreadyFinishedError, | |
DocumentIndexingError, | |
InvalidActionError, | |
InvalidMetadataError, | |
) | |
from controllers.console.setup import setup_required | |
from controllers.console.wraps import account_initialization_required, cloud_edition_billing_resource_check | |
from core.errors.error import ( | |
LLMBadRequestError, | |
ModelCurrentlyNotSupportError, | |
ProviderTokenNotInitError, | |
QuotaExceededError, | |
) | |
from core.indexing_runner import IndexingRunner | |
from core.model_manager import ModelManager | |
from core.model_runtime.entities.model_entities import ModelType | |
from core.model_runtime.errors.invoke import InvokeAuthorizationError | |
from core.rag.extractor.entity.extract_setting import ExtractSetting | |
from extensions.ext_database import db | |
from extensions.ext_redis import redis_client | |
from fields.document_fields import ( | |
dataset_and_document_fields, | |
document_fields, | |
document_status_fields, | |
document_with_segments_fields, | |
) | |
from libs.login import login_required | |
from models.dataset import Dataset, DatasetProcessRule, Document, DocumentSegment | |
from models.model import UploadFile | |
from services.dataset_service import DatasetService, DocumentService | |
from tasks.add_document_to_index_task import add_document_to_index_task | |
from tasks.remove_document_from_index_task import remove_document_from_index_task | |
class DocumentResource(Resource): | |
def get_document(self, dataset_id: str, document_id: str) -> Document: | |
dataset = DatasetService.get_dataset(dataset_id) | |
if not dataset: | |
raise NotFound('Dataset not found.') | |
try: | |
DatasetService.check_dataset_permission(dataset, current_user) | |
except services.errors.account.NoPermissionError as e: | |
raise Forbidden(str(e)) | |
document = DocumentService.get_document(dataset_id, document_id) | |
if not document: | |
raise NotFound('Document not found.') | |
if document.tenant_id != current_user.current_tenant_id: | |
raise Forbidden('No permission.') | |
return document | |
def get_batch_documents(self, dataset_id: str, batch: str) -> list[Document]: | |
dataset = DatasetService.get_dataset(dataset_id) | |
if not dataset: | |
raise NotFound('Dataset not found.') | |
try: | |
DatasetService.check_dataset_permission(dataset, current_user) | |
except services.errors.account.NoPermissionError as e: | |
raise Forbidden(str(e)) | |
documents = DocumentService.get_batch_documents(dataset_id, batch) | |
if not documents: | |
raise NotFound('Documents not found.') | |
return documents | |
class GetProcessRuleApi(Resource): | |
def get(self): | |
req_data = request.args | |
document_id = req_data.get('document_id') | |
# get default rules | |
mode = DocumentService.DEFAULT_RULES['mode'] | |
rules = DocumentService.DEFAULT_RULES['rules'] | |
if document_id: | |
# get the latest process rule | |
document = Document.query.get_or_404(document_id) | |
dataset = DatasetService.get_dataset(document.dataset_id) | |
if not dataset: | |
raise NotFound('Dataset not found.') | |
try: | |
DatasetService.check_dataset_permission(dataset, current_user) | |
except services.errors.account.NoPermissionError as e: | |
raise Forbidden(str(e)) | |
# get the latest process rule | |
dataset_process_rule = db.session.query(DatasetProcessRule). \ | |
filter(DatasetProcessRule.dataset_id == document.dataset_id). \ | |
order_by(DatasetProcessRule.created_at.desc()). \ | |
limit(1). \ | |
one_or_none() | |
if dataset_process_rule: | |
mode = dataset_process_rule.mode | |
rules = dataset_process_rule.rules_dict | |
return { | |
'mode': mode, | |
'rules': rules | |
} | |
class DatasetDocumentListApi(Resource): | |
def get(self, dataset_id): | |
dataset_id = str(dataset_id) | |
page = request.args.get('page', default=1, type=int) | |
limit = request.args.get('limit', default=20, type=int) | |
search = request.args.get('keyword', default=None, type=str) | |
sort = request.args.get('sort', default='-created_at', type=str) | |
fetch = request.args.get('fetch', default=False, type=bool) | |
dataset = DatasetService.get_dataset(dataset_id) | |
if not dataset: | |
raise NotFound('Dataset not found.') | |
try: | |
DatasetService.check_dataset_permission(dataset, current_user) | |
except services.errors.account.NoPermissionError as e: | |
raise Forbidden(str(e)) | |
query = Document.query.filter_by( | |
dataset_id=str(dataset_id), tenant_id=current_user.current_tenant_id) | |
if search: | |
search = f'%{search}%' | |
query = query.filter(Document.name.like(search)) | |
if sort.startswith('-'): | |
sort_logic = desc | |
sort = sort[1:] | |
else: | |
sort_logic = asc | |
if sort == 'hit_count': | |
sub_query = db.select(DocumentSegment.document_id, | |
db.func.sum(DocumentSegment.hit_count).label("total_hit_count")) \ | |
.group_by(DocumentSegment.document_id) \ | |
.subquery() | |
query = query.outerjoin(sub_query, sub_query.c.document_id == Document.id) \ | |
.order_by(sort_logic(db.func.coalesce(sub_query.c.total_hit_count, 0))) | |
elif sort == 'created_at': | |
query = query.order_by(sort_logic(Document.created_at)) | |
else: | |
query = query.order_by(desc(Document.created_at)) | |
paginated_documents = query.paginate( | |
page=page, per_page=limit, max_per_page=100, error_out=False) | |
documents = paginated_documents.items | |
if fetch: | |
for document in documents: | |
completed_segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None), | |
DocumentSegment.document_id == str(document.id), | |
DocumentSegment.status != 're_segment').count() | |
total_segments = DocumentSegment.query.filter(DocumentSegment.document_id == str(document.id), | |
DocumentSegment.status != 're_segment').count() | |
document.completed_segments = completed_segments | |
document.total_segments = total_segments | |
data = marshal(documents, document_with_segments_fields) | |
else: | |
data = marshal(documents, document_fields) | |
response = { | |
'data': data, | |
'has_more': len(documents) == limit, | |
'limit': limit, | |
'total': paginated_documents.total, | |
'page': page | |
} | |
return response | |
documents_and_batch_fields = { | |
'documents': fields.List(fields.Nested(document_fields)), | |
'batch': fields.String | |
} | |
def post(self, dataset_id): | |
dataset_id = str(dataset_id) | |
dataset = DatasetService.get_dataset(dataset_id) | |
if not dataset: | |
raise NotFound('Dataset not found.') | |
# The role of the current user in the ta table must be admin or owner | |
if not current_user.is_admin_or_owner: | |
raise Forbidden() | |
try: | |
DatasetService.check_dataset_permission(dataset, current_user) | |
except services.errors.account.NoPermissionError as e: | |
raise Forbidden(str(e)) | |
parser = reqparse.RequestParser() | |
parser.add_argument('indexing_technique', type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, | |
location='json') | |
parser.add_argument('data_source', type=dict, required=False, location='json') | |
parser.add_argument('process_rule', type=dict, required=False, location='json') | |
parser.add_argument('duplicate', type=bool, default=True, nullable=False, location='json') | |
parser.add_argument('original_document_id', type=str, required=False, location='json') | |
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json') | |
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False, | |
location='json') | |
parser.add_argument('retrieval_model', type=dict, required=False, nullable=False, | |
location='json') | |
args = parser.parse_args() | |
if not dataset.indexing_technique and not args['indexing_technique']: | |
raise ValueError('indexing_technique is required.') | |
# validate args | |
DocumentService.document_create_args_validate(args) | |
try: | |
documents, batch = DocumentService.save_document_with_dataset_id(dataset, args, current_user) | |
except ProviderTokenNotInitError as ex: | |
raise ProviderNotInitializeError(ex.description) | |
except QuotaExceededError: | |
raise ProviderQuotaExceededError() | |
except ModelCurrentlyNotSupportError: | |
raise ProviderModelCurrentlyNotSupportError() | |
return { | |
'documents': documents, | |
'batch': batch | |
} | |
class DatasetInitApi(Resource): | |
def post(self): | |
# The role of the current user in the ta table must be admin or owner | |
if not current_user.is_admin_or_owner: | |
raise Forbidden() | |
parser = reqparse.RequestParser() | |
parser.add_argument('indexing_technique', type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, required=True, | |
nullable=False, location='json') | |
parser.add_argument('data_source', type=dict, required=True, nullable=True, location='json') | |
parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json') | |
parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json') | |
parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False, | |
location='json') | |
parser.add_argument('retrieval_model', type=dict, required=False, nullable=False, | |
location='json') | |
args = parser.parse_args() | |
if args['indexing_technique'] == 'high_quality': | |
try: | |
model_manager = ModelManager() | |
model_manager.get_default_model_instance( | |
tenant_id=current_user.current_tenant_id, | |
model_type=ModelType.TEXT_EMBEDDING | |
) | |
except InvokeAuthorizationError: | |
raise ProviderNotInitializeError( | |
"No Embedding Model available. Please configure a valid provider " | |
"in the Settings -> Model Provider.") | |
except ProviderTokenNotInitError as ex: | |
raise ProviderNotInitializeError(ex.description) | |
# validate args | |
DocumentService.document_create_args_validate(args) | |
try: | |
dataset, documents, batch = DocumentService.save_document_without_dataset_id( | |
tenant_id=current_user.current_tenant_id, | |
document_data=args, | |
account=current_user | |
) | |
except ProviderTokenNotInitError as ex: | |
raise ProviderNotInitializeError(ex.description) | |
except QuotaExceededError: | |
raise ProviderQuotaExceededError() | |
except ModelCurrentlyNotSupportError: | |
raise ProviderModelCurrentlyNotSupportError() | |
response = { | |
'dataset': dataset, | |
'documents': documents, | |
'batch': batch | |
} | |
return response | |
class DocumentIndexingEstimateApi(DocumentResource): | |
def get(self, dataset_id, document_id): | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
document = self.get_document(dataset_id, document_id) | |
if document.indexing_status in ['completed', 'error']: | |
raise DocumentAlreadyFinishedError() | |
data_process_rule = document.dataset_process_rule | |
data_process_rule_dict = data_process_rule.to_dict() | |
response = { | |
"tokens": 0, | |
"total_price": 0, | |
"currency": "USD", | |
"total_segments": 0, | |
"preview": [] | |
} | |
if document.data_source_type == 'upload_file': | |
data_source_info = document.data_source_info_dict | |
if data_source_info and 'upload_file_id' in data_source_info: | |
file_id = data_source_info['upload_file_id'] | |
file = db.session.query(UploadFile).filter( | |
UploadFile.tenant_id == document.tenant_id, | |
UploadFile.id == file_id | |
).first() | |
# raise error if file not found | |
if not file: | |
raise NotFound('File not found.') | |
extract_setting = ExtractSetting( | |
datasource_type="upload_file", | |
upload_file=file, | |
document_model=document.doc_form | |
) | |
indexing_runner = IndexingRunner() | |
try: | |
response = indexing_runner.indexing_estimate(current_user.current_tenant_id, [extract_setting], | |
data_process_rule_dict, document.doc_form, | |
'English', dataset_id) | |
except LLMBadRequestError: | |
raise ProviderNotInitializeError( | |
"No Embedding Model available. Please configure a valid provider " | |
"in the Settings -> Model Provider.") | |
except ProviderTokenNotInitError as ex: | |
raise ProviderNotInitializeError(ex.description) | |
return response | |
class DocumentBatchIndexingEstimateApi(DocumentResource): | |
def get(self, dataset_id, batch): | |
dataset_id = str(dataset_id) | |
batch = str(batch) | |
documents = self.get_batch_documents(dataset_id, batch) | |
response = { | |
"tokens": 0, | |
"total_price": 0, | |
"currency": "USD", | |
"total_segments": 0, | |
"preview": [] | |
} | |
if not documents: | |
return response | |
data_process_rule = documents[0].dataset_process_rule | |
data_process_rule_dict = data_process_rule.to_dict() | |
info_list = [] | |
extract_settings = [] | |
for document in documents: | |
if document.indexing_status in ['completed', 'error']: | |
raise DocumentAlreadyFinishedError() | |
data_source_info = document.data_source_info_dict | |
# format document files info | |
if data_source_info and 'upload_file_id' in data_source_info: | |
file_id = data_source_info['upload_file_id'] | |
info_list.append(file_id) | |
# format document notion info | |
elif data_source_info and 'notion_workspace_id' in data_source_info and 'notion_page_id' in data_source_info: | |
pages = [] | |
page = { | |
'page_id': data_source_info['notion_page_id'], | |
'type': data_source_info['type'] | |
} | |
pages.append(page) | |
notion_info = { | |
'workspace_id': data_source_info['notion_workspace_id'], | |
'pages': pages | |
} | |
info_list.append(notion_info) | |
if document.data_source_type == 'upload_file': | |
file_id = data_source_info['upload_file_id'] | |
file_detail = db.session.query(UploadFile).filter( | |
UploadFile.tenant_id == current_user.current_tenant_id, | |
UploadFile.id == file_id | |
).first() | |
if file_detail is None: | |
raise NotFound("File not found.") | |
extract_setting = ExtractSetting( | |
datasource_type="upload_file", | |
upload_file=file_detail, | |
document_model=document.doc_form | |
) | |
extract_settings.append(extract_setting) | |
elif document.data_source_type == 'notion_import': | |
extract_setting = ExtractSetting( | |
datasource_type="notion_import", | |
notion_info={ | |
"notion_workspace_id": data_source_info['notion_workspace_id'], | |
"notion_obj_id": data_source_info['notion_page_id'], | |
"notion_page_type": data_source_info['type'], | |
"tenant_id": current_user.current_tenant_id | |
}, | |
document_model=document.doc_form | |
) | |
extract_settings.append(extract_setting) | |
else: | |
raise ValueError('Data source type not support') | |
indexing_runner = IndexingRunner() | |
try: | |
response = indexing_runner.indexing_estimate(current_user.current_tenant_id, extract_settings, | |
data_process_rule_dict, document.doc_form, | |
'English', dataset_id) | |
except LLMBadRequestError: | |
raise ProviderNotInitializeError( | |
"No Embedding Model available. Please configure a valid provider " | |
"in the Settings -> Model Provider.") | |
except ProviderTokenNotInitError as ex: | |
raise ProviderNotInitializeError(ex.description) | |
return response | |
class DocumentBatchIndexingStatusApi(DocumentResource): | |
def get(self, dataset_id, batch): | |
dataset_id = str(dataset_id) | |
batch = str(batch) | |
documents = self.get_batch_documents(dataset_id, batch) | |
documents_status = [] | |
for document in documents: | |
completed_segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None), | |
DocumentSegment.document_id == str(document.id), | |
DocumentSegment.status != 're_segment').count() | |
total_segments = DocumentSegment.query.filter(DocumentSegment.document_id == str(document.id), | |
DocumentSegment.status != 're_segment').count() | |
document.completed_segments = completed_segments | |
document.total_segments = total_segments | |
if document.is_paused: | |
document.indexing_status = 'paused' | |
documents_status.append(marshal(document, document_status_fields)) | |
data = { | |
'data': documents_status | |
} | |
return data | |
class DocumentIndexingStatusApi(DocumentResource): | |
def get(self, dataset_id, document_id): | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
document = self.get_document(dataset_id, document_id) | |
completed_segments = DocumentSegment.query \ | |
.filter(DocumentSegment.completed_at.isnot(None), | |
DocumentSegment.document_id == str(document_id), | |
DocumentSegment.status != 're_segment') \ | |
.count() | |
total_segments = DocumentSegment.query \ | |
.filter(DocumentSegment.document_id == str(document_id), | |
DocumentSegment.status != 're_segment') \ | |
.count() | |
document.completed_segments = completed_segments | |
document.total_segments = total_segments | |
if document.is_paused: | |
document.indexing_status = 'paused' | |
return marshal(document, document_status_fields) | |
class DocumentDetailApi(DocumentResource): | |
METADATA_CHOICES = {'all', 'only', 'without'} | |
def get(self, dataset_id, document_id): | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
document = self.get_document(dataset_id, document_id) | |
metadata = request.args.get('metadata', 'all') | |
if metadata not in self.METADATA_CHOICES: | |
raise InvalidMetadataError(f'Invalid metadata value: {metadata}') | |
if metadata == 'only': | |
response = { | |
'id': document.id, | |
'doc_type': document.doc_type, | |
'doc_metadata': document.doc_metadata | |
} | |
elif metadata == 'without': | |
process_rules = DatasetService.get_process_rules(dataset_id) | |
data_source_info = document.data_source_detail_dict | |
response = { | |
'id': document.id, | |
'position': document.position, | |
'data_source_type': document.data_source_type, | |
'data_source_info': data_source_info, | |
'dataset_process_rule_id': document.dataset_process_rule_id, | |
'dataset_process_rule': process_rules, | |
'name': document.name, | |
'created_from': document.created_from, | |
'created_by': document.created_by, | |
'created_at': document.created_at.timestamp(), | |
'tokens': document.tokens, | |
'indexing_status': document.indexing_status, | |
'completed_at': int(document.completed_at.timestamp()) if document.completed_at else None, | |
'updated_at': int(document.updated_at.timestamp()) if document.updated_at else None, | |
'indexing_latency': document.indexing_latency, | |
'error': document.error, | |
'enabled': document.enabled, | |
'disabled_at': int(document.disabled_at.timestamp()) if document.disabled_at else None, | |
'disabled_by': document.disabled_by, | |
'archived': document.archived, | |
'segment_count': document.segment_count, | |
'average_segment_length': document.average_segment_length, | |
'hit_count': document.hit_count, | |
'display_status': document.display_status, | |
'doc_form': document.doc_form | |
} | |
else: | |
process_rules = DatasetService.get_process_rules(dataset_id) | |
data_source_info = document.data_source_detail_dict | |
response = { | |
'id': document.id, | |
'position': document.position, | |
'data_source_type': document.data_source_type, | |
'data_source_info': data_source_info, | |
'dataset_process_rule_id': document.dataset_process_rule_id, | |
'dataset_process_rule': process_rules, | |
'name': document.name, | |
'created_from': document.created_from, | |
'created_by': document.created_by, | |
'created_at': document.created_at.timestamp(), | |
'tokens': document.tokens, | |
'indexing_status': document.indexing_status, | |
'completed_at': int(document.completed_at.timestamp()) if document.completed_at else None, | |
'updated_at': int(document.updated_at.timestamp()) if document.updated_at else None, | |
'indexing_latency': document.indexing_latency, | |
'error': document.error, | |
'enabled': document.enabled, | |
'disabled_at': int(document.disabled_at.timestamp()) if document.disabled_at else None, | |
'disabled_by': document.disabled_by, | |
'archived': document.archived, | |
'doc_type': document.doc_type, | |
'doc_metadata': document.doc_metadata, | |
'segment_count': document.segment_count, | |
'average_segment_length': document.average_segment_length, | |
'hit_count': document.hit_count, | |
'display_status': document.display_status, | |
'doc_form': document.doc_form | |
} | |
return response, 200 | |
class DocumentProcessingApi(DocumentResource): | |
def patch(self, dataset_id, document_id, action): | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
document = self.get_document(dataset_id, document_id) | |
# The role of the current user in the ta table must be admin or owner | |
if not current_user.is_admin_or_owner: | |
raise Forbidden() | |
if action == "pause": | |
if document.indexing_status != "indexing": | |
raise InvalidActionError('Document not in indexing state.') | |
document.paused_by = current_user.id | |
document.paused_at = datetime.now(timezone.utc).replace(tzinfo=None) | |
document.is_paused = True | |
db.session.commit() | |
elif action == "resume": | |
if document.indexing_status not in ["paused", "error"]: | |
raise InvalidActionError('Document not in paused or error state.') | |
document.paused_by = None | |
document.paused_at = None | |
document.is_paused = False | |
db.session.commit() | |
else: | |
raise InvalidActionError() | |
return {'result': 'success'}, 200 | |
class DocumentDeleteApi(DocumentResource): | |
def delete(self, dataset_id, document_id): | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
dataset = DatasetService.get_dataset(dataset_id) | |
if dataset is None: | |
raise NotFound("Dataset not found.") | |
# check user's model setting | |
DatasetService.check_dataset_model_setting(dataset) | |
document = self.get_document(dataset_id, document_id) | |
try: | |
DocumentService.delete_document(document) | |
except services.errors.document.DocumentIndexingError: | |
raise DocumentIndexingError('Cannot delete document during indexing.') | |
return {'result': 'success'}, 204 | |
class DocumentMetadataApi(DocumentResource): | |
def put(self, dataset_id, document_id): | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
document = self.get_document(dataset_id, document_id) | |
req_data = request.get_json() | |
doc_type = req_data.get('doc_type') | |
doc_metadata = req_data.get('doc_metadata') | |
# The role of the current user in the ta table must be admin or owner | |
if not current_user.is_admin_or_owner: | |
raise Forbidden() | |
if doc_type is None or doc_metadata is None: | |
raise ValueError('Both doc_type and doc_metadata must be provided.') | |
if doc_type not in DocumentService.DOCUMENT_METADATA_SCHEMA: | |
raise ValueError('Invalid doc_type.') | |
if not isinstance(doc_metadata, dict): | |
raise ValueError('doc_metadata must be a dictionary.') | |
metadata_schema = DocumentService.DOCUMENT_METADATA_SCHEMA[doc_type] | |
document.doc_metadata = {} | |
if doc_type == 'others': | |
document.doc_metadata = doc_metadata | |
else: | |
for key, value_type in metadata_schema.items(): | |
value = doc_metadata.get(key) | |
if value is not None and isinstance(value, value_type): | |
document.doc_metadata[key] = value | |
document.doc_type = doc_type | |
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None) | |
db.session.commit() | |
return {'result': 'success', 'message': 'Document metadata updated.'}, 200 | |
class DocumentStatusApi(DocumentResource): | |
def patch(self, dataset_id, document_id, action): | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
dataset = DatasetService.get_dataset(dataset_id) | |
if dataset is None: | |
raise NotFound("Dataset not found.") | |
# check user's model setting | |
DatasetService.check_dataset_model_setting(dataset) | |
document = self.get_document(dataset_id, document_id) | |
# The role of the current user in the ta table must be admin or owner | |
if not current_user.is_admin_or_owner: | |
raise Forbidden() | |
indexing_cache_key = 'document_{}_indexing'.format(document.id) | |
cache_result = redis_client.get(indexing_cache_key) | |
if cache_result is not None: | |
raise InvalidActionError("Document is being indexed, please try again later") | |
if action == "enable": | |
if document.enabled: | |
raise InvalidActionError('Document already enabled.') | |
document.enabled = True | |
document.disabled_at = None | |
document.disabled_by = None | |
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None) | |
db.session.commit() | |
# Set cache to prevent indexing the same document multiple times | |
redis_client.setex(indexing_cache_key, 600, 1) | |
add_document_to_index_task.delay(document_id) | |
return {'result': 'success'}, 200 | |
elif action == "disable": | |
if not document.completed_at or document.indexing_status != 'completed': | |
raise InvalidActionError('Document is not completed.') | |
if not document.enabled: | |
raise InvalidActionError('Document already disabled.') | |
document.enabled = False | |
document.disabled_at = datetime.now(timezone.utc).replace(tzinfo=None) | |
document.disabled_by = current_user.id | |
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None) | |
db.session.commit() | |
# Set cache to prevent indexing the same document multiple times | |
redis_client.setex(indexing_cache_key, 600, 1) | |
remove_document_from_index_task.delay(document_id) | |
return {'result': 'success'}, 200 | |
elif action == "archive": | |
if document.archived: | |
raise InvalidActionError('Document already archived.') | |
document.archived = True | |
document.archived_at = datetime.now(timezone.utc).replace(tzinfo=None) | |
document.archived_by = current_user.id | |
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None) | |
db.session.commit() | |
if document.enabled: | |
# Set cache to prevent indexing the same document multiple times | |
redis_client.setex(indexing_cache_key, 600, 1) | |
remove_document_from_index_task.delay(document_id) | |
return {'result': 'success'}, 200 | |
elif action == "un_archive": | |
if not document.archived: | |
raise InvalidActionError('Document is not archived.') | |
document.archived = False | |
document.archived_at = None | |
document.archived_by = None | |
document.updated_at = datetime.now(timezone.utc).replace(tzinfo=None) | |
db.session.commit() | |
# Set cache to prevent indexing the same document multiple times | |
redis_client.setex(indexing_cache_key, 600, 1) | |
add_document_to_index_task.delay(document_id) | |
return {'result': 'success'}, 200 | |
else: | |
raise InvalidActionError() | |
class DocumentPauseApi(DocumentResource): | |
def patch(self, dataset_id, document_id): | |
"""pause document.""" | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
dataset = DatasetService.get_dataset(dataset_id) | |
if not dataset: | |
raise NotFound('Dataset not found.') | |
document = DocumentService.get_document(dataset.id, document_id) | |
# 404 if document not found | |
if document is None: | |
raise NotFound("Document Not Exists.") | |
# 403 if document is archived | |
if DocumentService.check_archived(document): | |
raise ArchivedDocumentImmutableError() | |
try: | |
# pause document | |
DocumentService.pause_document(document) | |
except services.errors.document.DocumentIndexingError: | |
raise DocumentIndexingError('Cannot pause completed document.') | |
return {'result': 'success'}, 204 | |
class DocumentRecoverApi(DocumentResource): | |
def patch(self, dataset_id, document_id): | |
"""recover document.""" | |
dataset_id = str(dataset_id) | |
document_id = str(document_id) | |
dataset = DatasetService.get_dataset(dataset_id) | |
if not dataset: | |
raise NotFound('Dataset not found.') | |
document = DocumentService.get_document(dataset.id, document_id) | |
# 404 if document not found | |
if document is None: | |
raise NotFound("Document Not Exists.") | |
# 403 if document is archived | |
if DocumentService.check_archived(document): | |
raise ArchivedDocumentImmutableError() | |
try: | |
# pause document | |
DocumentService.recover_document(document) | |
except services.errors.document.DocumentIndexingError: | |
raise DocumentIndexingError('Document is not in paused status.') | |
return {'result': 'success'}, 204 | |
class DocumentRetryApi(DocumentResource): | |
def post(self, dataset_id): | |
"""retry document.""" | |
parser = reqparse.RequestParser() | |
parser.add_argument('document_ids', type=list, required=True, nullable=False, | |
location='json') | |
args = parser.parse_args() | |
dataset_id = str(dataset_id) | |
dataset = DatasetService.get_dataset(dataset_id) | |
retry_documents = [] | |
if not dataset: | |
raise NotFound('Dataset not found.') | |
for document_id in args['document_ids']: | |
try: | |
document_id = str(document_id) | |
document = DocumentService.get_document(dataset.id, document_id) | |
# 404 if document not found | |
if document is None: | |
raise NotFound("Document Not Exists.") | |
# 403 if document is archived | |
if DocumentService.check_archived(document): | |
raise ArchivedDocumentImmutableError() | |
# 400 if document is completed | |
if document.indexing_status == 'completed': | |
raise DocumentAlreadyFinishedError() | |
retry_documents.append(document) | |
except Exception as e: | |
logging.error(f"Document {document_id} retry failed: {str(e)}") | |
continue | |
# retry document | |
DocumentService.retry_document(dataset_id, retry_documents) | |
return {'result': 'success'}, 204 | |
api.add_resource(GetProcessRuleApi, '/datasets/process-rule') | |
api.add_resource(DatasetDocumentListApi, | |
'/datasets/<uuid:dataset_id>/documents') | |
api.add_resource(DatasetInitApi, | |
'/datasets/init') | |
api.add_resource(DocumentIndexingEstimateApi, | |
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-estimate') | |
api.add_resource(DocumentBatchIndexingEstimateApi, | |
'/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-estimate') | |
api.add_resource(DocumentBatchIndexingStatusApi, | |
'/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-status') | |
api.add_resource(DocumentIndexingStatusApi, | |
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-status') | |
api.add_resource(DocumentDetailApi, | |
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>') | |
api.add_resource(DocumentProcessingApi, | |
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/<string:action>') | |
api.add_resource(DocumentDeleteApi, | |
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>') | |
api.add_resource(DocumentMetadataApi, | |
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/metadata') | |
api.add_resource(DocumentStatusApi, | |
'/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/status/<string:action>') | |
api.add_resource(DocumentPauseApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/pause') | |
api.add_resource(DocumentRecoverApi, '/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/resume') | |
api.add_resource(DocumentRetryApi, '/datasets/<uuid:dataset_id>/retry') | |