Spaces:
Running
Running
File size: 64,629 Bytes
27fd333 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 |
import datetime
import json
import logging
import random
import time
import uuid
from typing import Optional, cast
from flask import current_app
from flask_login import current_user
from sqlalchemy import func
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from core.rag.datasource.keyword.keyword_factory import Keyword
from core.rag.models.document import Document as RAGDocument
from events.dataset_event import dataset_was_deleted
from events.document_event import document_was_deleted
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from libs import helper
from models.account import Account
from models.dataset import (
AppDatasetJoin,
Dataset,
DatasetCollectionBinding,
DatasetProcessRule,
DatasetQuery,
Document,
DocumentSegment,
)
from models.model import UploadFile
from models.source import DataSourceBinding
from services.errors.account import NoPermissionError
from services.errors.dataset import DatasetNameDuplicateError
from services.errors.document import DocumentIndexingError
from services.errors.file import FileNotExistsError
from services.feature_service import FeatureModel, FeatureService
from services.tag_service import TagService
from services.vector_service import VectorService
from tasks.clean_notion_document_task import clean_notion_document_task
from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
from tasks.delete_segment_from_index_task import delete_segment_from_index_task
from tasks.disable_segment_from_index_task import disable_segment_from_index_task
from tasks.document_indexing_task import document_indexing_task
from tasks.document_indexing_update_task import document_indexing_update_task
from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
from tasks.recover_document_indexing_task import recover_document_indexing_task
from tasks.retry_document_indexing_task import retry_document_indexing_task
class DatasetService:
@staticmethod
def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
if user:
permission_filter = db.or_(Dataset.created_by == user.id,
Dataset.permission == 'all_team_members')
else:
permission_filter = Dataset.permission == 'all_team_members'
query = Dataset.query.filter(
db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
.order_by(Dataset.created_at.desc())
if search:
query = query.filter(db.and_(Dataset.name.ilike(f'%{search}%')))
if tag_ids:
target_ids = TagService.get_target_ids_by_tag_ids('knowledge', tenant_id, tag_ids)
if target_ids:
query = query.filter(db.and_(Dataset.id.in_(target_ids)))
else:
return [], 0
datasets = query.paginate(
page=page,
per_page=per_page,
max_per_page=100,
error_out=False
)
return datasets.items, datasets.total
@staticmethod
def get_process_rules(dataset_id):
# get the latest process rule
dataset_process_rule = db.session.query(DatasetProcessRule). \
filter(DatasetProcessRule.dataset_id == dataset_id). \
order_by(DatasetProcessRule.created_at.desc()). \
limit(1). \
one_or_none()
if dataset_process_rule:
mode = dataset_process_rule.mode
rules = dataset_process_rule.rules_dict
else:
mode = DocumentService.DEFAULT_RULES['mode']
rules = DocumentService.DEFAULT_RULES['rules']
return {
'mode': mode,
'rules': rules
}
@staticmethod
def get_datasets_by_ids(ids, tenant_id):
datasets = Dataset.query.filter(Dataset.id.in_(ids),
Dataset.tenant_id == tenant_id).paginate(
page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
return datasets.items, datasets.total
@staticmethod
def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
# check if dataset name already exists
if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
raise DatasetNameDuplicateError(
f'Dataset with name {name} already exists.')
embedding_model = None
if indexing_technique == 'high_quality':
model_manager = ModelManager()
embedding_model = model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.TEXT_EMBEDDING
)
dataset = Dataset(name=name, indexing_technique=indexing_technique)
# dataset = Dataset(name=name, provider=provider, config=config)
dataset.created_by = account.id
dataset.updated_by = account.id
dataset.tenant_id = tenant_id
dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
dataset.embedding_model = embedding_model.model if embedding_model else None
db.session.add(dataset)
db.session.commit()
return dataset
@staticmethod
def get_dataset(dataset_id):
return Dataset.query.filter_by(
id=dataset_id
).first()
@staticmethod
def check_dataset_model_setting(dataset):
if dataset.indexing_technique == 'high_quality':
try:
model_manager = ModelManager()
model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ValueError(f"The dataset in unavailable, due to: "
f"{ex.description}")
@staticmethod
def update_dataset(dataset_id, data, user):
filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
dataset = DatasetService.get_dataset(dataset_id)
DatasetService.check_dataset_permission(dataset, user)
action = None
if dataset.indexing_technique != data['indexing_technique']:
# if update indexing_technique
if data['indexing_technique'] == 'economy':
action = 'remove'
filtered_data['embedding_model'] = None
filtered_data['embedding_model_provider'] = None
filtered_data['collection_binding_id'] = None
elif data['indexing_technique'] == 'high_quality':
action = 'add'
# get embedding model setting
try:
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=data['embedding_model_provider'],
model_type=ModelType.TEXT_EMBEDDING,
model=data['embedding_model']
)
filtered_data['embedding_model'] = embedding_model.model
filtered_data['embedding_model_provider'] = embedding_model.provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider,
embedding_model.model
)
filtered_data['collection_binding_id'] = dataset_collection_binding.id
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ValueError(ex.description)
else:
if data['embedding_model_provider'] != dataset.embedding_model_provider or \
data['embedding_model'] != dataset.embedding_model:
action = 'update'
try:
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=data['embedding_model_provider'],
model_type=ModelType.TEXT_EMBEDDING,
model=data['embedding_model']
)
filtered_data['embedding_model'] = embedding_model.model
filtered_data['embedding_model_provider'] = embedding_model.provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider,
embedding_model.model
)
filtered_data['collection_binding_id'] = dataset_collection_binding.id
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider.")
except ProviderTokenNotInitError as ex:
raise ValueError(ex.description)
filtered_data['updated_by'] = user.id
filtered_data['updated_at'] = datetime.datetime.now()
# update Retrieval model
filtered_data['retrieval_model'] = data['retrieval_model']
dataset.query.filter_by(id=dataset_id).update(filtered_data)
db.session.commit()
if action:
deal_dataset_vector_index_task.delay(dataset_id, action)
return dataset
@staticmethod
def delete_dataset(dataset_id, user):
# todo: cannot delete dataset if it is being processed
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
return False
DatasetService.check_dataset_permission(dataset, user)
dataset_was_deleted.send(dataset)
db.session.delete(dataset)
db.session.commit()
return True
@staticmethod
def check_dataset_permission(dataset, user):
if dataset.tenant_id != user.current_tenant_id:
logging.debug(
f'User {user.id} does not have permission to access dataset {dataset.id}')
raise NoPermissionError(
'You do not have permission to access this dataset.')
if dataset.permission == 'only_me' and dataset.created_by != user.id:
logging.debug(
f'User {user.id} does not have permission to access dataset {dataset.id}')
raise NoPermissionError(
'You do not have permission to access this dataset.')
@staticmethod
def get_dataset_queries(dataset_id: str, page: int, per_page: int):
dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
.order_by(db.desc(DatasetQuery.created_at)) \
.paginate(
page=page, per_page=per_page, max_per_page=100, error_out=False
)
return dataset_queries.items, dataset_queries.total
@staticmethod
def get_related_apps(dataset_id: str):
return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
.order_by(db.desc(AppDatasetJoin.created_at)).all()
class DocumentService:
DEFAULT_RULES = {
'mode': 'custom',
'rules': {
'pre_processing_rules': [
{'id': 'remove_extra_spaces', 'enabled': True},
{'id': 'remove_urls_emails', 'enabled': False}
],
'segmentation': {
'delimiter': '\n',
'max_tokens': 500,
'chunk_overlap': 50
}
}
}
DOCUMENT_METADATA_SCHEMA = {
"book": {
"title": str,
"language": str,
"author": str,
"publisher": str,
"publication_date": str,
"isbn": str,
"category": str,
},
"web_page": {
"title": str,
"url": str,
"language": str,
"publish_date": str,
"author/publisher": str,
"topic/keywords": str,
"description": str,
},
"paper": {
"title": str,
"language": str,
"author": str,
"publish_date": str,
"journal/conference_name": str,
"volume/issue/page_numbers": str,
"doi": str,
"topic/keywords": str,
"abstract": str,
},
"social_media_post": {
"platform": str,
"author/username": str,
"publish_date": str,
"post_url": str,
"topic/tags": str,
},
"wikipedia_entry": {
"title": str,
"language": str,
"web_page_url": str,
"last_edit_date": str,
"editor/contributor": str,
"summary/introduction": str,
},
"personal_document": {
"title": str,
"author": str,
"creation_date": str,
"last_modified_date": str,
"document_type": str,
"tags/category": str,
},
"business_document": {
"title": str,
"author": str,
"creation_date": str,
"last_modified_date": str,
"document_type": str,
"department/team": str,
},
"im_chat_log": {
"chat_platform": str,
"chat_participants/group_name": str,
"start_date": str,
"end_date": str,
"summary": str,
},
"synced_from_notion": {
"title": str,
"language": str,
"author/creator": str,
"creation_date": str,
"last_modified_date": str,
"notion_page_link": str,
"category/tags": str,
"description": str,
},
"synced_from_github": {
"repository_name": str,
"repository_description": str,
"repository_owner/organization": str,
"code_filename": str,
"code_file_path": str,
"programming_language": str,
"github_link": str,
"open_source_license": str,
"commit_date": str,
"commit_author": str,
},
"others": dict
}
@staticmethod
def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
return document
@staticmethod
def get_document_by_id(document_id: str) -> Optional[Document]:
document = db.session.query(Document).filter(
Document.id == document_id
).first()
return document
@staticmethod
def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
documents = db.session.query(Document).filter(
Document.dataset_id == dataset_id,
Document.enabled == True
).all()
return documents
@staticmethod
def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
documents = db.session.query(Document).filter(
Document.dataset_id == dataset_id,
Document.indexing_status.in_(['error', 'paused'])
).all()
return documents
@staticmethod
def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
documents = db.session.query(Document).filter(
Document.batch == batch,
Document.dataset_id == dataset_id,
Document.tenant_id == current_user.current_tenant_id
).all()
return documents
@staticmethod
def get_document_file_detail(file_id: str):
file_detail = db.session.query(UploadFile). \
filter(UploadFile.id == file_id). \
one_or_none()
return file_detail
@staticmethod
def check_archived(document):
if document.archived:
return True
else:
return False
@staticmethod
def delete_document(document):
# trigger document_was_deleted signal
document_was_deleted.send(document.id, dataset_id=document.dataset_id, doc_form=document.doc_form)
db.session.delete(document)
db.session.commit()
@staticmethod
def pause_document(document):
if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
raise DocumentIndexingError()
# update document to be paused
document.is_paused = True
document.paused_by = current_user.id
document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
db.session.add(document)
db.session.commit()
# set document paused flag
indexing_cache_key = 'document_{}_is_paused'.format(document.id)
redis_client.setnx(indexing_cache_key, "True")
@staticmethod
def recover_document(document):
if not document.is_paused:
raise DocumentIndexingError()
# update document to be recover
document.is_paused = False
document.paused_by = None
document.paused_at = None
db.session.add(document)
db.session.commit()
# delete paused flag
indexing_cache_key = 'document_{}_is_paused'.format(document.id)
redis_client.delete(indexing_cache_key)
# trigger async task
recover_document_indexing_task.delay(document.dataset_id, document.id)
@staticmethod
def retry_document(dataset_id: str, documents: list[Document]):
for document in documents:
# retry document indexing
document.indexing_status = 'waiting'
db.session.add(document)
db.session.commit()
# add retry flag
retry_indexing_cache_key = 'document_{}_is_retried'.format(document.id)
redis_client.setex(retry_indexing_cache_key, 600, 1)
# trigger async task
document_ids = [document.id for document in documents]
retry_document_indexing_task.delay(dataset_id, document_ids)
@staticmethod
def get_documents_position(dataset_id):
document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
if document:
return document.position + 1
else:
return 1
@staticmethod
def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
created_from: str = 'web'):
# check document limit
features = FeatureService.get_features(current_user.current_tenant_id)
if features.billing.enabled:
if 'original_document_id' not in document_data or not document_data['original_document_id']:
count = 0
if document_data["data_source"]["type"] == "upload_file":
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
count = len(upload_file_list)
elif document_data["data_source"]["type"] == "notion_import":
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
for notion_info in notion_info_list:
count = count + len(notion_info['pages'])
batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
if count > batch_upload_limit:
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
DocumentService.check_documents_upload_quota(count, features)
# if dataset is empty, update dataset data_source_type
if not dataset.data_source_type:
dataset.data_source_type = document_data["data_source"]["type"]
if not dataset.indexing_technique:
if 'indexing_technique' not in document_data \
or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
raise ValueError("Indexing technique is required")
dataset.indexing_technique = document_data["indexing_technique"]
if document_data["indexing_technique"] == 'high_quality':
model_manager = ModelManager()
embedding_model = model_manager.get_default_model_instance(
tenant_id=current_user.current_tenant_id,
model_type=ModelType.TEXT_EMBEDDING
)
dataset.embedding_model = embedding_model.model
dataset.embedding_model_provider = embedding_model.provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider,
embedding_model.model
)
dataset.collection_binding_id = dataset_collection_binding.id
if not dataset.retrieval_model:
default_retrieval_model = {
'search_method': 'semantic_search',
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
'reranking_model_name': ''
},
'top_k': 2,
'score_threshold_enabled': False
}
dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
'retrieval_model') else default_retrieval_model
documents = []
batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
if document_data.get("original_document_id"):
document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
documents.append(document)
else:
# save process rule
if not dataset_process_rule:
process_rule = document_data["process_rule"]
if process_rule["mode"] == "custom":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule["mode"],
rules=json.dumps(process_rule["rules"]),
created_by=account.id
)
elif process_rule["mode"] == "automatic":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule["mode"],
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
created_by=account.id
)
db.session.add(dataset_process_rule)
db.session.commit()
position = DocumentService.get_documents_position(dataset.id)
document_ids = []
duplicate_document_ids = []
if document_data["data_source"]["type"] == "upload_file":
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
for file_id in upload_file_list:
file = db.session.query(UploadFile).filter(
UploadFile.tenant_id == dataset.tenant_id,
UploadFile.id == file_id
).first()
# raise error if file not found
if not file:
raise FileNotExistsError()
file_name = file.name
data_source_info = {
"upload_file_id": file_id,
}
# check duplicate
if document_data.get('duplicate', False):
document = Document.query.filter_by(
dataset_id=dataset.id,
tenant_id=current_user.current_tenant_id,
data_source_type='upload_file',
enabled=True,
name=file_name
).first()
if document:
document.dataset_process_rule_id = dataset_process_rule.id
document.updated_at = datetime.datetime.utcnow()
document.created_from = created_from
document.doc_form = document_data['doc_form']
document.doc_language = document_data['doc_language']
document.data_source_info = json.dumps(data_source_info)
document.batch = batch
document.indexing_status = 'waiting'
db.session.add(document)
documents.append(document)
duplicate_document_ids.append(document.id)
continue
document = DocumentService.build_document(dataset, dataset_process_rule.id,
document_data["data_source"]["type"],
document_data["doc_form"],
document_data["doc_language"],
data_source_info, created_from, position,
account, file_name, batch)
db.session.add(document)
db.session.flush()
document_ids.append(document.id)
documents.append(document)
position += 1
elif document_data["data_source"]["type"] == "notion_import":
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
exist_page_ids = []
exist_document = dict()
documents = Document.query.filter_by(
dataset_id=dataset.id,
tenant_id=current_user.current_tenant_id,
data_source_type='notion_import',
enabled=True
).all()
if documents:
for document in documents:
data_source_info = json.loads(document.data_source_info)
exist_page_ids.append(data_source_info['notion_page_id'])
exist_document[data_source_info['notion_page_id']] = document.id
for notion_info in notion_info_list:
workspace_id = notion_info['workspace_id']
data_source_binding = DataSourceBinding.query.filter(
db.and_(
DataSourceBinding.tenant_id == current_user.current_tenant_id,
DataSourceBinding.provider == 'notion',
DataSourceBinding.disabled == False,
DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
)
).first()
if not data_source_binding:
raise ValueError('Data source binding not found.')
for page in notion_info['pages']:
if page['page_id'] not in exist_page_ids:
data_source_info = {
"notion_workspace_id": workspace_id,
"notion_page_id": page['page_id'],
"notion_page_icon": page['page_icon'],
"type": page['type']
}
document = DocumentService.build_document(dataset, dataset_process_rule.id,
document_data["data_source"]["type"],
document_data["doc_form"],
document_data["doc_language"],
data_source_info, created_from, position,
account, page['page_name'], batch)
db.session.add(document)
db.session.flush()
document_ids.append(document.id)
documents.append(document)
position += 1
else:
exist_document.pop(page['page_id'])
# delete not selected documents
if len(exist_document) > 0:
clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
db.session.commit()
# trigger async task
if document_ids:
document_indexing_task.delay(dataset.id, document_ids)
if duplicate_document_ids:
duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
return documents, batch
@staticmethod
def check_documents_upload_quota(count: int, features: FeatureModel):
can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
if count > can_upload_size:
raise ValueError(
f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.')
@staticmethod
def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
document_language: str, data_source_info: dict, created_from: str, position: int,
account: Account,
name: str, batch: str):
document = Document(
tenant_id=dataset.tenant_id,
dataset_id=dataset.id,
position=position,
data_source_type=data_source_type,
data_source_info=json.dumps(data_source_info),
dataset_process_rule_id=process_rule_id,
batch=batch,
name=name,
created_from=created_from,
created_by=account.id,
doc_form=document_form,
doc_language=document_language
)
return document
@staticmethod
def get_tenant_documents_count():
documents_count = Document.query.filter(Document.completed_at.isnot(None),
Document.enabled == True,
Document.archived == False,
Document.tenant_id == current_user.current_tenant_id).count()
return documents_count
@staticmethod
def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
created_from: str = 'web'):
DatasetService.check_dataset_model_setting(dataset)
document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
if document.display_status != 'available':
raise ValueError("Document is not available")
# update document name
if document_data.get('name'):
document.name = document_data['name']
# save process rule
if document_data.get('process_rule'):
process_rule = document_data["process_rule"]
if process_rule["mode"] == "custom":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule["mode"],
rules=json.dumps(process_rule["rules"]),
created_by=account.id
)
elif process_rule["mode"] == "automatic":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule["mode"],
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
created_by=account.id
)
db.session.add(dataset_process_rule)
db.session.commit()
document.dataset_process_rule_id = dataset_process_rule.id
# update document data source
if document_data.get('data_source'):
file_name = ''
data_source_info = {}
if document_data["data_source"]["type"] == "upload_file":
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
for file_id in upload_file_list:
file = db.session.query(UploadFile).filter(
UploadFile.tenant_id == dataset.tenant_id,
UploadFile.id == file_id
).first()
# raise error if file not found
if not file:
raise FileNotExistsError()
file_name = file.name
data_source_info = {
"upload_file_id": file_id,
}
elif document_data["data_source"]["type"] == "notion_import":
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
for notion_info in notion_info_list:
workspace_id = notion_info['workspace_id']
data_source_binding = DataSourceBinding.query.filter(
db.and_(
DataSourceBinding.tenant_id == current_user.current_tenant_id,
DataSourceBinding.provider == 'notion',
DataSourceBinding.disabled == False,
DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
)
).first()
if not data_source_binding:
raise ValueError('Data source binding not found.')
for page in notion_info['pages']:
data_source_info = {
"notion_workspace_id": workspace_id,
"notion_page_id": page['page_id'],
"notion_page_icon": page['page_icon'],
"type": page['type']
}
document.data_source_type = document_data["data_source"]["type"]
document.data_source_info = json.dumps(data_source_info)
document.name = file_name
# update document to be waiting
document.indexing_status = 'waiting'
document.completed_at = None
document.processing_started_at = None
document.parsing_completed_at = None
document.cleaning_completed_at = None
document.splitting_completed_at = None
document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
document.created_from = created_from
document.doc_form = document_data['doc_form']
db.session.add(document)
db.session.commit()
# update document segment
update_params = {
DocumentSegment.status: 're_segment'
}
DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
db.session.commit()
# trigger async task
document_indexing_update_task.delay(document.dataset_id, document.id)
return document
@staticmethod
def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
features = FeatureService.get_features(current_user.current_tenant_id)
if features.billing.enabled:
count = 0
if document_data["data_source"]["type"] == "upload_file":
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
count = len(upload_file_list)
elif document_data["data_source"]["type"] == "notion_import":
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
for notion_info in notion_info_list:
count = count + len(notion_info['pages'])
batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
if count > batch_upload_limit:
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
DocumentService.check_documents_upload_quota(count, features)
embedding_model = None
dataset_collection_binding_id = None
retrieval_model = None
if document_data['indexing_technique'] == 'high_quality':
model_manager = ModelManager()
embedding_model = model_manager.get_default_model_instance(
tenant_id=current_user.current_tenant_id,
model_type=ModelType.TEXT_EMBEDDING
)
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider,
embedding_model.model
)
dataset_collection_binding_id = dataset_collection_binding.id
if document_data.get('retrieval_model'):
retrieval_model = document_data['retrieval_model']
else:
default_retrieval_model = {
'search_method': 'semantic_search',
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
'reranking_model_name': ''
},
'top_k': 2,
'score_threshold_enabled': False
}
retrieval_model = default_retrieval_model
# save dataset
dataset = Dataset(
tenant_id=tenant_id,
name='',
data_source_type=document_data["data_source"]["type"],
indexing_technique=document_data["indexing_technique"],
created_by=account.id,
embedding_model=embedding_model.model if embedding_model else None,
embedding_model_provider=embedding_model.provider if embedding_model else None,
collection_binding_id=dataset_collection_binding_id,
retrieval_model=retrieval_model
)
db.session.add(dataset)
db.session.flush()
documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
cut_length = 18
cut_name = documents[0].name[:cut_length]
dataset.name = cut_name + '...'
dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
db.session.commit()
return dataset, documents, batch
@classmethod
def document_create_args_validate(cls, args: dict):
if 'original_document_id' not in args or not args['original_document_id']:
DocumentService.data_source_args_validate(args)
DocumentService.process_rule_args_validate(args)
else:
if ('data_source' not in args and not args['data_source']) \
and ('process_rule' not in args and not args['process_rule']):
raise ValueError("Data source or Process rule is required")
else:
if args.get('data_source'):
DocumentService.data_source_args_validate(args)
if args.get('process_rule'):
DocumentService.process_rule_args_validate(args)
@classmethod
def data_source_args_validate(cls, args: dict):
if 'data_source' not in args or not args['data_source']:
raise ValueError("Data source is required")
if not isinstance(args['data_source'], dict):
raise ValueError("Data source is invalid")
if 'type' not in args['data_source'] or not args['data_source']['type']:
raise ValueError("Data source type is required")
if args['data_source']['type'] not in Document.DATA_SOURCES:
raise ValueError("Data source type is invalid")
if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
raise ValueError("Data source info is required")
if args['data_source']['type'] == 'upload_file':
if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
'file_info_list']:
raise ValueError("File source info is required")
if args['data_source']['type'] == 'notion_import':
if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
'notion_info_list']:
raise ValueError("Notion source info is required")
@classmethod
def process_rule_args_validate(cls, args: dict):
if 'process_rule' not in args or not args['process_rule']:
raise ValueError("Process rule is required")
if not isinstance(args['process_rule'], dict):
raise ValueError("Process rule is invalid")
if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
raise ValueError("Process rule mode is required")
if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
raise ValueError("Process rule mode is invalid")
if args['process_rule']['mode'] == 'automatic':
args['process_rule']['rules'] = {}
else:
if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
raise ValueError("Process rule rules is required")
if not isinstance(args['process_rule']['rules'], dict):
raise ValueError("Process rule rules is invalid")
if 'pre_processing_rules' not in args['process_rule']['rules'] \
or args['process_rule']['rules']['pre_processing_rules'] is None:
raise ValueError("Process rule pre_processing_rules is required")
if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
raise ValueError("Process rule pre_processing_rules is invalid")
unique_pre_processing_rule_dicts = {}
for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
raise ValueError("Process rule pre_processing_rules id is required")
if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
raise ValueError("Process rule pre_processing_rules id is invalid")
if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
raise ValueError("Process rule pre_processing_rules enabled is required")
if not isinstance(pre_processing_rule['enabled'], bool):
raise ValueError("Process rule pre_processing_rules enabled is invalid")
unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
if 'segmentation' not in args['process_rule']['rules'] \
or args['process_rule']['rules']['segmentation'] is None:
raise ValueError("Process rule segmentation is required")
if not isinstance(args['process_rule']['rules']['segmentation'], dict):
raise ValueError("Process rule segmentation is invalid")
if 'separator' not in args['process_rule']['rules']['segmentation'] \
or not args['process_rule']['rules']['segmentation']['separator']:
raise ValueError("Process rule segmentation separator is required")
if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
raise ValueError("Process rule segmentation separator is invalid")
if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
or not args['process_rule']['rules']['segmentation']['max_tokens']:
raise ValueError("Process rule segmentation max_tokens is required")
if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
raise ValueError("Process rule segmentation max_tokens is invalid")
@classmethod
def estimate_args_validate(cls, args: dict):
if 'info_list' not in args or not args['info_list']:
raise ValueError("Data source info is required")
if not isinstance(args['info_list'], dict):
raise ValueError("Data info is invalid")
if 'process_rule' not in args or not args['process_rule']:
raise ValueError("Process rule is required")
if not isinstance(args['process_rule'], dict):
raise ValueError("Process rule is invalid")
if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
raise ValueError("Process rule mode is required")
if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
raise ValueError("Process rule mode is invalid")
if args['process_rule']['mode'] == 'automatic':
args['process_rule']['rules'] = {}
else:
if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
raise ValueError("Process rule rules is required")
if not isinstance(args['process_rule']['rules'], dict):
raise ValueError("Process rule rules is invalid")
if 'pre_processing_rules' not in args['process_rule']['rules'] \
or args['process_rule']['rules']['pre_processing_rules'] is None:
raise ValueError("Process rule pre_processing_rules is required")
if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
raise ValueError("Process rule pre_processing_rules is invalid")
unique_pre_processing_rule_dicts = {}
for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
raise ValueError("Process rule pre_processing_rules id is required")
if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
raise ValueError("Process rule pre_processing_rules id is invalid")
if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
raise ValueError("Process rule pre_processing_rules enabled is required")
if not isinstance(pre_processing_rule['enabled'], bool):
raise ValueError("Process rule pre_processing_rules enabled is invalid")
unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
if 'segmentation' not in args['process_rule']['rules'] \
or args['process_rule']['rules']['segmentation'] is None:
raise ValueError("Process rule segmentation is required")
if not isinstance(args['process_rule']['rules']['segmentation'], dict):
raise ValueError("Process rule segmentation is invalid")
if 'separator' not in args['process_rule']['rules']['segmentation'] \
or not args['process_rule']['rules']['segmentation']['separator']:
raise ValueError("Process rule segmentation separator is required")
if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
raise ValueError("Process rule segmentation separator is invalid")
if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
or not args['process_rule']['rules']['segmentation']['max_tokens']:
raise ValueError("Process rule segmentation max_tokens is required")
if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
raise ValueError("Process rule segmentation max_tokens is invalid")
class SegmentService:
@classmethod
def segment_create_args_validate(cls, args: dict, document: Document):
if document.doc_form == 'qa_model':
if 'answer' not in args or not args['answer']:
raise ValueError("Answer is required")
if not args['answer'].strip():
raise ValueError("Answer is empty")
if 'content' not in args or not args['content'] or not args['content'].strip():
raise ValueError("Content is empty")
@classmethod
def create_segment(cls, args: dict, document: Document, dataset: Dataset):
content = args['content']
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
tokens = 0
if dataset.indexing_technique == 'high_quality':
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
# calc embedding use tokens
model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
tokens = model_type_instance.get_num_tokens(
model=embedding_model.model,
credentials=embedding_model.credentials,
texts=[content]
)
lock_name = 'add_segment_lock_document_id_{}'.format(document.id)
with redis_client.lock(lock_name, timeout=600):
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
DocumentSegment.document_id == document.id
).scalar()
segment_document = DocumentSegment(
tenant_id=current_user.current_tenant_id,
dataset_id=document.dataset_id,
document_id=document.id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1,
content=content,
word_count=len(content),
tokens=tokens,
status='completed',
indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
created_by=current_user.id
)
if document.doc_form == 'qa_model':
segment_document.answer = args['answer']
db.session.add(segment_document)
db.session.commit()
# save vector index
try:
VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
except Exception as e:
logging.exception("create segment index failed")
segment_document.enabled = False
segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment_document.status = 'error'
segment_document.error = str(e)
db.session.commit()
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
return segment
@classmethod
def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)
with redis_client.lock(lock_name, timeout=600):
embedding_model = None
if dataset.indexing_technique == 'high_quality':
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
DocumentSegment.document_id == document.id
).scalar()
pre_segment_data_list = []
segment_data_list = []
keywords_list = []
for segment_item in segments:
content = segment_item['content']
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
tokens = 0
if dataset.indexing_technique == 'high_quality' and embedding_model:
# calc embedding use tokens
model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
tokens = model_type_instance.get_num_tokens(
model=embedding_model.model,
credentials=embedding_model.credentials,
texts=[content]
)
segment_document = DocumentSegment(
tenant_id=current_user.current_tenant_id,
dataset_id=document.dataset_id,
document_id=document.id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1,
content=content,
word_count=len(content),
tokens=tokens,
status='completed',
indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
created_by=current_user.id
)
if document.doc_form == 'qa_model':
segment_document.answer = segment_item['answer']
db.session.add(segment_document)
segment_data_list.append(segment_document)
pre_segment_data_list.append(segment_document)
keywords_list.append(segment_item['keywords'])
try:
# save vector index
VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
except Exception as e:
logging.exception("create segment index failed")
for segment_document in segment_data_list:
segment_document.enabled = False
segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment_document.status = 'error'
segment_document.error = str(e)
db.session.commit()
return segment_data_list
@classmethod
def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
cache_result = redis_client.get(indexing_cache_key)
if cache_result is not None:
raise ValueError("Segment is indexing, please try again later")
if 'enabled' in args and args['enabled'] is not None:
action = args['enabled']
if segment.enabled != action:
if not action:
segment.enabled = action
segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment.disabled_by = current_user.id
db.session.add(segment)
db.session.commit()
# Set cache to prevent indexing the same segment multiple times
redis_client.setex(indexing_cache_key, 600, 1)
disable_segment_from_index_task.delay(segment.id)
return segment
if not segment.enabled:
if 'enabled' in args and args['enabled'] is not None:
if not args['enabled']:
raise ValueError("Can't update disabled segment")
else:
raise ValueError("Can't update disabled segment")
try:
content = args['content']
if segment.content == content:
if document.doc_form == 'qa_model':
segment.answer = args['answer']
if args.get('keywords'):
segment.keywords = args['keywords']
segment.enabled = True
segment.disabled_at = None
segment.disabled_by = None
db.session.add(segment)
db.session.commit()
# update segment index task
if args['keywords']:
keyword = Keyword(dataset)
keyword.delete_by_ids([segment.index_node_id])
document = RAGDocument(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
)
keyword.add_texts([document], keywords_list=[args['keywords']])
else:
segment_hash = helper.generate_text_hash(content)
tokens = 0
if dataset.indexing_technique == 'high_quality':
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
# calc embedding use tokens
model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
tokens = model_type_instance.get_num_tokens(
model=embedding_model.model,
credentials=embedding_model.credentials,
texts=[content]
)
segment.content = content
segment.index_node_hash = segment_hash
segment.word_count = len(content)
segment.tokens = tokens
segment.status = 'completed'
segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment.updated_by = current_user.id
segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment.enabled = True
segment.disabled_at = None
segment.disabled_by = None
if document.doc_form == 'qa_model':
segment.answer = args['answer']
db.session.add(segment)
db.session.commit()
# update segment vector index
VectorService.update_segment_vector(args['keywords'], segment, dataset)
except Exception as e:
logging.exception("update segment index failed")
segment.enabled = False
segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment.status = 'error'
segment.error = str(e)
db.session.commit()
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
return segment
@classmethod
def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
cache_result = redis_client.get(indexing_cache_key)
if cache_result is not None:
raise ValueError("Segment is deleting.")
# enabled segment need to delete index
if segment.enabled:
# send delete segment index task
redis_client.setex(indexing_cache_key, 600, 1)
delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
db.session.delete(segment)
db.session.commit()
class DatasetCollectionBindingService:
@classmethod
def get_dataset_collection_binding(cls, provider_name: str, model_name: str,
collection_type: str = 'dataset') -> DatasetCollectionBinding:
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
filter(DatasetCollectionBinding.provider_name == provider_name,
DatasetCollectionBinding.model_name == model_name,
DatasetCollectionBinding.type == collection_type). \
order_by(DatasetCollectionBinding.created_at). \
first()
if not dataset_collection_binding:
dataset_collection_binding = DatasetCollectionBinding(
provider_name=provider_name,
model_name=model_name,
collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
type=collection_type
)
db.session.add(dataset_collection_binding)
db.session.commit()
return dataset_collection_binding
@classmethod
def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,
collection_type: str = 'dataset') -> DatasetCollectionBinding:
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
filter(DatasetCollectionBinding.id == collection_binding_id,
DatasetCollectionBinding.type == collection_type). \
order_by(DatasetCollectionBinding.created_at). \
first()
return dataset_collection_binding
|