ReLaX-VQA / extractor /visualise_resnet.py
xinyiW915's picture
Upload 5 files
79e0f15 verified
raw
history blame contribute delete
6.85 kB
import warnings
warnings.filterwarnings("ignore")
import os
import glob
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
from torchvision import models, transforms
from thop import profile
is_flop_cal = False
# get the activation
def get_activation(model, layer, input_img_data):
model.eval()
activations = []
inputs = []
def hook(module, input, output):
activations.append(output)
inputs.append(input[0])
hook_handle = layer.register_forward_hook(hook)
with torch.no_grad():
model(input_img_data)
hook_handle.remove()
return activations, inputs
def get_activation_map(frame, layer_name, resnet50, device):
# image pre-processing
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# Apply the transformations (resize and normalize)
frame_tensor = transform(frame)
# adding index 0 changes the original [C, H, W] shape to [1, C, H, W]
if frame_tensor.dim() == 3:
frame_tensor = frame_tensor.unsqueeze(0)
# print(f'Image dimension: {frame_tensor.shape}')
# getting the activation of a given layer
layer_obj = eval(layer_name)
activations, inputs = get_activation(resnet50, layer_obj, frame_tensor)
activated_img = activations[0][0]
activation_array = activated_img.cpu().numpy()
# calculate FLOPs for layer
if is_flop_cal == True:
flops, params = profile(layer_obj, inputs=(inputs[0],), verbose=False)
if params == 0 and isinstance(layer_obj, torch.nn.Conv2d):
params = layer_obj.in_channels * layer_obj.out_channels * layer_obj.kernel_size[0] * layer_obj.kernel_size[1]
if layer_obj.bias is not None:
params += layer_obj.out_channels
# print(f"FLOPs for {layer_name}: {flops}, Params: {params}")
else:
flops, params = None, None
return activated_img, activation_array, flops, params
def process_video_frame(video_name, frame, frame_number, all_layers, resnet50, device):
# create a dictionary to store activation arrays for each layer
activations_dict = {}
total_flops = 0
total_params = 0
for layer_name in all_layers:
fig_name = f"resnet50_feature_map_layer_{layer_name}"
combined_name = f"resnet50_feature_map"
activated_img, activation_array, flops, params = get_activation_map(frame, layer_name, resnet50, device)
if is_flop_cal == True:
total_flops += flops
total_params += params
# save activation maps as png
# png_path = f'../visualisation/resnet50/{video_name}/frame_{frame_number}/'
# npy_path = f'../features/resnet50/{video_name}/frame_{frame_number}/'
# os.makedirs(png_path, exist_ok=True)
# os.makedirs(npy_path, exist_ok=True)
# get_activation_png(png_path, fig_name, activated_img)
# save activation features as npy
# get_activation_npy(npy_path, fig_name, activation_array)
# save to the dictionary
activations_dict[layer_name] = activated_img
# print(f"total FLOPs for Resnet50 layerstack: {total_flops}, Params: {total_params}")
frame_npy_path = f'../features/resnet50/{video_name}/frame_{frame_number}_{combined_name}.npy'
return activations_dict, frame_npy_path, total_flops, total_params
def get_activation_png(png_path, fig_name, activated_img, n=8):
fig = plt.figure(figsize=(10, 10))
# visualise activation map for 64 channels
for i in range(n):
for j in range(n):
idx = (n * i) + j
if idx >= activated_img.shape[0]:
break
ax = fig.add_subplot(n, n, idx + 1)
ax.imshow(activated_img[idx].cpu().numpy(), cmap='viridis')
ax.axis('off')
# save figures
fig_path = f'{png_path}{fig_name}.png'
print(fig_path)
print("----------------" + '\n')
plt.savefig(fig_path)
plt.close()
def get_activation_npy(npy_path, fig_name, activation_array):
np.save(f'{npy_path}{fig_name}.npy', activation_array)
if __name__ == '__main__':
device_name = "gpu"
if device_name == "gpu":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cpu")
print(f"Running on {'GPU' if device.type == 'cuda' else 'CPU'}")
# pre-trained ResNet-50 model to device
resnet50 = models.resnet50(pretrained=True).to(device)
all_layers = ['resnet50.conv1',
'resnet50.layer1[0]', 'resnet50.layer1[1]', 'resnet50.layer1[2]',
'resnet50.layer2[0]', 'resnet50.layer2[1]', 'resnet50.layer2[2]', 'resnet50.layer2[3]',
'resnet50.layer3[0]', 'resnet50.layer3[1]', 'resnet50.layer3[2]', 'resnet50.layer3[3]',
'resnet50.layer4[0]', 'resnet50.layer4[1]', 'resnet50.layer4[2]']
video_type = 'test'
# Test
if video_type == 'test':
metadata_path = "../../metadata/test_videos.csv"
# NR:
elif video_type == 'resolution_ugc':
resolution = '360P'
metadata_path = f"../../metadata/YOUTUBE_UGC_{resolution}_metadata.csv"
else:
metadata_path = f'../../metadata/{video_type.upper()}_metadata.csv'
ugcdata = pd.read_csv(metadata_path)
for i in range(len(ugcdata)):
video_name = ugcdata['vid'][i]
sampled_frame_path = os.path.join('../..', 'video_sampled_frame', 'sampled_frame', f'{video_name}')
print(f"Processing video: {video_name}")
image_paths = glob.glob(os.path.join(sampled_frame_path, f'{video_name}_*.png'))
frame_number = 0
for image in image_paths:
print(f"{image}")
frame_number += 1
process_video_frame(video_name, image, frame_number, all_layers, resnet50, device)
# # ResNet-50 layers to visualize
# layers_to_visualize_resnet50 = {
# 'conv1': 0,
# 'layer1.0.conv1': 2,
# 'layer1.0.conv2': 3,
# 'layer1.1.conv1': 5,
# 'layer1.1.conv2': 6,
# 'layer1.2.conv1': 8,
# 'layer1.2.conv2': 9,
# 'layer2.0.conv1': 11,
# 'layer2.0.conv2': 12,
# 'layer2.1.conv1': 14,
# 'layer2.1.conv2': 15,
# 'layer2.2.conv1': 17,
# 'layer2.2.conv2': 18,
# 'layer2.3.conv1': 20,
# 'layer2.3.conv2': 21,
# 'layer3.0.conv1': 23,
# 'layer3.0.conv2': 24,
# 'layer3.0.downsample.0': 25,
# 'layer3.1.conv1': 27,
# 'layer3.1.conv2': 28,
# 'layer3.2.conv1': 30,
# 'layer3.2.conv2': 31,
# 'layer3.3.conv1': 33,
# 'layer3.3.conv2': 34,
# 'layer4.0.conv1': 36,
# 'layer4.0.conv2': 37,
# 'layer4.0.downsample.0': 38,
# 'layer4.1.conv1': 40,
# 'layer4.1.conv2': 41,
# 'layer4.2.conv1': 43,
# 'layer4.2.conv2': 44,
# }