File size: 7,546 Bytes
79e0f15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import warnings
warnings.filterwarnings("ignore")
import os
import glob
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
from torchvision import models, transforms
from thop import profile
is_flop_cal = False

# get the activation
def get_activation(model, layer, input_img_data):
    model.eval()
    activations = []
    inputs = []

    def hook(module, input, output):
        activations.append(output)
        inputs.append(input[0])

    hook_handle = layer.register_forward_hook(hook)
    with torch.no_grad():
        model(input_img_data)
    hook_handle.remove()
    return activations, inputs

def get_activation_map(frame, layer_name, resnet50, device):
    # image pre-processing
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    # Apply the transformations (resize and normalize)
    frame_tensor = transform(frame)

    # adding index 0 changes the original [C, H, W] shape to [1, C, H, W]
    if frame_tensor.dim() == 3:
        frame_tensor = frame_tensor.unsqueeze(0)
    # print(f'Image dimension: {frame_tensor.shape}')

    # getting the activation of a given layer
    conv_idx = layer_name
    layer_obj = eval(conv_idx)
    activations, inputs = get_activation(resnet50, layer_obj, frame_tensor)
    activated_img = activations[0][0]
    activation_array = activated_img.cpu().numpy()

    # calculate FLOPs for layer
    if is_flop_cal == True:
        flops, params = profile(layer_obj, inputs=(inputs[0],), verbose=False)
        if params == 0 and isinstance(layer_obj, torch.nn.Conv2d):
            params = layer_obj.in_channels * layer_obj.out_channels * layer_obj.kernel_size[0] * layer_obj.kernel_size[1]
            if layer_obj.bias is not None:
                params += layer_obj.out_channels
        # print(f"FLOPs for {layer_name}: {flops}, Params: {params}")
    else:
        flops, params = None, None
    return activated_img, activation_array, flops, params

def process_video_frame(video_name, frame, frame_number, layer_name, resnet50, device):
    # create a dictionary to store activation arrays for each layer
    activations_dict = {}
    total_flops = 0
    total_params = 0
    fig_name = f"resnet50_feature_map_layer_{layer_name}"
    combined_name = f"resnet50_feature_map"

    activated_img, activation_array, flops, params = get_activation_map(frame, layer_name, resnet50, device)
    if is_flop_cal == True:
        total_flops += flops
        total_params += params

    # save activation maps as png
    # png_path = f'../visualisation/resnet50/{video_name}/frame_{frame_number}/'
    # npy_path = f'../features/resnet50/{video_name}/frame_{frame_number}/'
    # os.makedirs(png_path, exist_ok=True)
    # os.makedirs(npy_path, exist_ok=True)
    # get_activation_png(png_path, fig_name, activated_img)
    # save activation features as pny
    # get_activation_npy(npy_path, fig_name, activation_array)

    # print(f"total FLOPs for Resnet50 layerstack: {total_flops}, Params: {total_params}")
    frame_npy_path = f'../features/resnet50/{video_name}/frame_{frame_number}_{combined_name}.npy'
    return activated_img, frame_npy_path, total_flops, total_params

def get_activation_png(png_path, fig_name, activated_img, n=8):
    fig = plt.figure(figsize=(10, 10))

    # visualise activation map for 64 channels
    for i in range(n):
        for j in range(n):
            idx = (n * i) + j
            if idx >= activated_img.shape[0]:
                break
            ax = fig.add_subplot(n, n, idx + 1)
            ax.imshow(activated_img[idx].cpu().numpy(), cmap='viridis')
            ax.axis('off')

    # save figures
    fig_path = f'{png_path}{fig_name}.png'
    print(fig_path)
    print("----------------" + '\n')
    plt.savefig(fig_path)
    plt.close()

def get_activation_npy(npy_path, fig_name, activation_array):
    np.save(f'{npy_path}{fig_name}.npy', activation_array)

if __name__ == '__main__':
    device_name = "gpu"
    if device_name == "gpu":
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    else:
        device = torch.device("cpu")
    print(f"Running on {'GPU' if device.type == 'cuda' else 'CPU'}")
    # pre-trained ResNet-50 model to device
    resnet50 = models.resnet50(pretrained=True).to(device)

    for idx, (name, layer) in enumerate(resnet50.named_children()):
        print(f"Index: {idx}, Layer Name: {name}, Layer Type: {type(layer)}")
    layer_name = 'layer4.2.conv2'

    video_type = 'test'
    # Test
    if video_type == 'test':
        metadata_path = "../../metadata/test_videos.csv"
    # NR:
    elif video_type == 'resolution_ugc':
        resolution = '360P'
        metadata_path = f"../../metadata/YOUTUBE_UGC_{resolution}_metadata.csv"
    else:
        metadata_path = f'../../metadata/{video_type.upper()}_metadata.csv'

    ugcdata = pd.read_csv(metadata_path)
    for i in range(len(ugcdata)):
        video_name = ugcdata['vid'][i]
        sampled_frame_path = os.path.join('../..', 'video_sampled_frame', 'sampled_frame', f'{video_name}')

        print(f"Processing video: {video_name}")
        image_paths = glob.glob(os.path.join(sampled_frame_path, f'{video_name}_*.png'))
        frame_number = 0
        for image in image_paths:
            print(f"{image}")
            frame_number += 1
            process_video_frame(video_name, image, frame_number, layer_name, resnet50, device)

# # ResNet-50 layers to visualize
# layers_to_visualize_resnet50 = {
#     'conv1': 0,
#     'layer1.0.conv1': 2,
#     'layer1.0.conv2': 3,
#     'layer1.1.conv1': 5,
#     'layer1.1.conv2': 6,
#     'layer1.2.conv1': 8,
#     'layer1.2.conv2': 9,
#     'layer2.0.conv1': 11,
#     'layer2.0.conv2': 12,
#     'layer2.1.conv1': 14,
#     'layer2.1.conv2': 15,
#     'layer2.2.conv1': 17,
#     'layer2.2.conv2': 18,
#     'layer2.3.conv1': 20,
#     'layer2.3.conv2': 21,
#     'layer3.0.conv1': 23,
#     'layer3.0.conv2': 24,
#     'layer3.0.downsample.0': 25,
#     'layer3.1.conv1': 27,
#     'layer3.1.conv2': 28,
#     'layer3.2.conv1': 30,
#     'layer3.2.conv2': 31,
#     'layer3.3.conv1': 33,
#     'layer3.3.conv2': 34,
#     'layer4.0.conv1': 36,
#     'layer4.0.conv2': 37,
#     'layer4.0.downsample.0': 38,
#     'layer4.1.conv1': 40,
#     'layer4.1.conv2': 41,
#     'layer4.2.conv1': 43,
#     'layer4.2.conv2': 44,
# }

# Index: 0, Layer Name: conv1, Layer Type: <class 'torch.nn.modules.conv.Conv2d'>
# Index: 1, Layer Name: bn1, Layer Type: <class 'torch.nn.modules.batchnorm.BatchNorm2d'>
# Index: 2, Layer Name: relu, Layer Type: <class 'torch.nn.modules.activation.ReLU'>
# Index: 3, Layer Name: maxpool, Layer Type: <class 'torch.nn.modules.pooling.MaxPool2d'>
# Index: 4, Layer Name: layer1, Layer Type: <class 'torch.nn.modules.container.Sequential'>
# Index: 5, Layer Name: layer2, Layer Type: <class 'torch.nn.modules.container.Sequential'>
# Index: 6, Layer Name: layer3, Layer Type: <class 'torch.nn.modules.container.Sequential'>
# Index: 7, Layer Name: layer4, Layer Type: <class 'torch.nn.modules.container.Sequential'>
# Index: 8, Layer Name: avgpool, Layer Type: <class 'torch.nn.modules.pooling.AdaptiveAvgPool2d'>
# Index: 9, Layer Name: fc, Layer Type: <class 'torch.nn.modules.linear.Linear'>