File size: 4,406 Bytes
55ed985
eae4507
55ed985
 
 
eae4507
55ed985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbd4574
55ed985
cbd4574
55ed985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os

import clip
import numpy as np
import pytorch_lightning as pl
import spaces
import torch
import torch.nn as nn
from huggingface_hub import snapshot_download
from PIL import Image


class AestheticPredictor:
    """Aesthetic Score Predictor.

    Args:
        clip_model_dir (str): Path to the directory of the CLIP model.
        sac_model_path (str): Path to the pre-trained SAC model.
        device (str): Device to use for computation ("cuda" or "cpu").
    """

    def __init__(self, clip_model_dir=None, sac_model_path=None, device="cpu"):

        self.device = device

        if clip_model_dir is None:
            model_path = snapshot_download(
                repo_id="xinjjj/RoboAssetGen", allow_patterns="aesthetic/*"
            )
            suffix = "aesthetic"
            model_path = snapshot_download(
                repo_id="xinjjj/RoboAssetGen", allow_patterns=f"{suffix}/*"
            )
            clip_model_dir = os.path.join(model_path, suffix)

        if sac_model_path is None:
            model_path = snapshot_download(
                repo_id="xinjjj/RoboAssetGen", allow_patterns="aesthetic/*"
            )
            suffix = "aesthetic"
            model_path = snapshot_download(
                repo_id="xinjjj/RoboAssetGen", allow_patterns=f"{suffix}/*"
            )
            sac_model_path = os.path.join(
                model_path, suffix, "sac+logos+ava1-l14-linearMSE.pth"
            )

        self.clip_model, self.preprocess = self._load_clip_model(
            clip_model_dir
        )
        self.sac_model = self._load_sac_model(sac_model_path, input_size=768)

    class MLP(pl.LightningModule):  # noqa
        def __init__(self, input_size):
            super().__init__()
            self.layers = nn.Sequential(
                nn.Linear(input_size, 1024),
                nn.Dropout(0.2),
                nn.Linear(1024, 128),
                nn.Dropout(0.2),
                nn.Linear(128, 64),
                nn.Dropout(0.1),
                nn.Linear(64, 16),
                nn.Linear(16, 1),
            )

        def forward(self, x):
            return self.layers(x)

    @staticmethod
    def normalized(a, axis=-1, order=2):
        """Normalize the array to unit norm."""
        l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
        l2[l2 == 0] = 1
        return a / np.expand_dims(l2, axis)

    def _load_clip_model(self, model_dir: str, model_name: str = "ViT-L/14"):
        """Load the CLIP model."""
        model, preprocess = clip.load(
            model_name, download_root=model_dir, device=self.device
        )
        return model, preprocess

    def _load_sac_model(self, model_path, input_size):
        """Load the SAC model."""
        model = self.MLP(input_size)
        ckpt = torch.load(model_path)
        model.load_state_dict(ckpt)
        model.to(self.device)
        model.eval()
        return model

    def predict(self, image_path):
        """Predict the aesthetic score for a given image.

        Args:
            image_path (str): Path to the image file.

        Returns:
            float: Predicted aesthetic score.
        """
        pil_image = Image.open(image_path)
        image = self.preprocess(pil_image).unsqueeze(0).to(self.device)

        with torch.no_grad():
            # Extract CLIP features
            image_features = self.clip_model.encode_image(image)
            # Normalize features
            normalized_features = self.normalized(
                image_features.cpu().detach().numpy()
            )
            # Predict score
            prediction = self.sac_model(
                torch.from_numpy(normalized_features)
                .type(torch.FloatTensor)
                .to(self.device)
            )

        return prediction.item()


if __name__ == "__main__":
    # Configuration
    img_path = "/home/users/xinjie.wang/xinjie/asset3d-gen/outputs/imageto3d/demo_objects/bed/sample_0/sample_0_raw.png"  # noqa
    # clip_model_dir = "/horizon-bucket/robot_lab/users/xinjie.wang/weights/clip"  # noqa
    # sac_model_path = "/horizon-bucket/robot_lab/users/xinjie.wang/weights/sac/sac+logos+ava1-l14-linearMSE.pth"  # noqa

    # Initialize the predictor
    predictor = AestheticPredictor()

    # Predict the aesthetic score
    score = predictor.predict(img_path)
    print("Aesthetic score predicted by the model:", score)