File size: 4,424 Bytes
55ed985
 
 
eae4507
55ed985
eae4507
55ed985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4811e40
55ed985
146eff7
55ed985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e2d5ef
2a08301
 
10c708b
 
 
 
eae4507
2a08301
10c708b
eae4507
 
 
2a08301
eae4507
 
 
55ed985
 
4e2d5ef
7cdd1a1
 
 
 
 
 
eae4507
 
 
7cdd1a1
 
eae4507
4e2d5ef
 
 
 
 
 
 
 
 
 
 
 
f8d7009
55ed985
4e2d5ef
 
7cdd1a1
4e2d5ef
 
 
 
37e4080
146eff7
55ed985
4e2d5ef
eae4507
55ed985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import logging
import os
from typing import Union

import numpy as np
import spaces
import torch
from huggingface_hub import snapshot_download
from PIL import Image
from asset3d_gen.data.utils import get_images_from_grid

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
logger = logging.getLogger(__name__)


__all__ = [
    "ImageStableSR",
    "ImageRealESRGAN",
]


class ImageStableSR:
    def __init__(
        self,
        model_path: str = "stabilityai/stable-diffusion-x4-upscaler",
        device="cuda",
    ) -> None:
        from diffusers import StableDiffusionUpscalePipeline

        self.up_pipeline_x4 = StableDiffusionUpscalePipeline.from_pretrained(
            model_path,
            torch_dtype=torch.float16,
        ).to(device)
        self.up_pipeline_x4.set_progress_bar_config(disable=True)
        # self.up_pipeline_x4.enable_model_cpu_offload()

    @spaces.GPU
    def __call__(
        self,
        image: Union[Image.Image, np.ndarray],
        prompt: str = "",
        infer_step: int = 20,
    ) -> Image.Image:
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)

        image = image.convert("RGB")

        with torch.no_grad():
            upscaled_image = self.up_pipeline_x4(
                image=image,
                prompt=[prompt],
                num_inference_steps=infer_step,
            ).images[0]

        return upscaled_image


class ImageRealESRGAN:
    def __init__(self, outscale: int, model_path: str = None) -> None:
        # monkey patch to support torchvision>=0.16
        import torchvision
        from packaging import version

        if version.parse(torchvision.__version__) > version.parse("0.16"):
            import sys
            import types

            import torchvision.transforms.functional as TF

            functional_tensor = types.ModuleType(
                "torchvision.transforms.functional_tensor"
            )
            functional_tensor.rgb_to_grayscale = TF.rgb_to_grayscale
            sys.modules["torchvision.transforms.functional_tensor"] = (
                functional_tensor
            )

        self.outscale = outscale
        self.upsampler = None

        if model_path is None:
            suffix = "super_resolution"
            model_path = snapshot_download(
                repo_id="xinjjj/RoboAssetGen", allow_patterns=f"{suffix}/*"
            )
            model_path = os.path.join(
                model_path, suffix, "RealESRGAN_x4plus.pth"
            )

        self.model_path = model_path

    def _lazy_init(self):
        if self.upsampler is None:
            from basicsr.archs.rrdbnet_arch import RRDBNet
            from realesrgan import RealESRGANer

            model = RRDBNet(
                num_in_ch=3,
                num_out_ch=3,
                num_feat=64,
                num_block=23,
                num_grow_ch=32,
                scale=4,
            )

            self.upsampler = RealESRGANer(
                scale=4,
                model_path=self.model_path,
                model=model,
                pre_pad=0,
                half=True,
            )

    @spaces.GPU
    def __call__(self, image: Union[Image.Image, np.ndarray]) -> Image.Image:
        self._lazy_init()

        if isinstance(image, Image.Image):
            image = np.array(image)

        with torch.no_grad():
            output, _ = self.upsampler.enhance(image, outscale=self.outscale)

        return Image.fromarray(output)


if __name__ == "__main__":
    color_path = "outputs/texture_mesh_gen/multi_view/color_sample0.png"

    # Use RealESRGAN_x4plus for x4 (512->2048) image super resolution.
    # model_path = "/horizon-bucket/robot_lab/users/xinjie.wang/weights/super_resolution/RealESRGAN_x4plus.pth"  # noqa
    super_model = ImageRealESRGAN(outscale=4)
    multiviews = get_images_from_grid(color_path, img_size=512)
    multiviews = [super_model(img.convert("RGB")) for img in multiviews]
    for idx, img in enumerate(multiviews):
        img.save(f"sr{idx}.png")

    # # Use stable diffusion for x4 (512->2048) image super resolution.
    # super_model = ImageStableSR()
    # multiviews = get_images_from_grid(color_path, img_size=512)
    # multiviews = [super_model(img) for img in multiviews]
    # for idx, img in enumerate(multiviews):
    #     img.save(f"sr_stable{idx}.png")