xingzhikun commited on
Commit
9b37099
·
verified ·
1 Parent(s): fdb8bd8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +68 -150
app.py CHANGED
@@ -1,154 +1,72 @@
 
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
- import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
  ],
150
- outputs=[result, seed],
 
 
 
 
 
 
151
  )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
+ # app.py
2
  import gradio as gr
3
+ from PIL import Image
4
+ from transformers import CLIPProcessor, CLIPModel
5
+ import time
6
+
7
+ # 模型加载(约需2分钟)
8
+ def load_model():
9
+ start = time.time()
10
+ model = CLIPModel.from_pretrained("vinid/plip")
11
+ processor = CLIPProcessor.from_pretrained("vinid/plip")
12
+ print(f"模型加载完成,耗时:{time.time()-start:.1f}秒")
13
+ return model, processor
14
+
15
+ model, processor = load_model()
16
+
17
+ # 预测函数
18
+ def classify_image(image, text_options):
19
+ try:
20
+ # 图像预处理
21
+ processed_img = image.convert("RGB").resize((224,224))
22
+
23
+ # 文本处理(自动分割逗号分隔的标签)
24
+ labels = [t.strip() for t in text_options.split(',')]
25
+
26
+ # 模型推理
27
+ inputs = processor(
28
+ text=labels,
29
+ images=processed_img,
30
+ return_tensors="pt",
31
+ padding=True
32
+ )
33
+ outputs = model(**inputs)
34
+ probs = outputs.logits_per_image.softmax(dim=1).tolist()[0]
35
+
36
+ # 结果格式化
37
+ return {label: round(prob,3) for label, prob in zip(labels, probs)}
38
+
39
+ except Exception as e:
40
+ return f"处理错误:{str(e)}"
41
+
42
+ # 界面布局
43
+ with gr.Blocks(theme=gr.themes.Soft()) as app:
44
+ gr.Markdown("# 🩺 医学影像智能诊断系统")
45
+
46
+ with gr.Row():
47
+ image_input = gr.Image(type="pil", label="上传病理切片")
48
+ text_input = gr.Textbox(
49
+ label="诊断标签(逗号分隔)",
50
+ value="恶性肿瘤, 良性病变, 炎症反应"
51
+ )
52
+
53
+ submit_btn = gr.Button("开始分析", variant="primary")
54
+
55
+ output = gr.Label(label="诊断概率分布", num_top_classes=3)
56
+
57
+ # 示例数据
58
+ gr.Examples(
59
+ examples=[
60
+ ["sample1.jpg", "肺癌, 肺结核, 正常组织"],
61
+ ["sample2.png", "胃癌, 胃炎, 胃溃疡"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  ],
63
+ inputs=[image_input, text_input]
64
+ )
65
+
66
+ submit_btn.click(
67
+ fn=classify_image,
68
+ inputs=[image_input, text_input],
69
+ outputs=output
70
  )
71
 
72
+ app.launch(debug=True)