import torch from mld.transforms.joints2rots import config def gmof(x, sigma): """ Geman-McClure error function """ x_squared = x ** 2 sigma_squared = sigma ** 2 return (sigma_squared * x_squared) / (sigma_squared + x_squared) def angle_prior(pose): """ Angle prior that penalizes unnatural bending of the knees and elbows """ # We subtract 3 because pose does not include the global rotation of the model return torch.exp( pose[:, [55 - 3, 58 - 3, 12 - 3, 15 - 3]] * torch.tensor([1., -1., -1, -1.], device=pose.device)) ** 2 def body_fitting_loss_3d(body_pose, preserve_pose, betas, model_joints, camera_translation, j3d, pose_prior, joints3d_conf, sigma=100, pose_prior_weight=4.78 * 1.5, shape_prior_weight=5.0, angle_prior_weight=15.2, joint_loss_weight=500.0, pose_preserve_weight=0.0, use_collision=False, model_vertices=None, model_faces=None, search_tree=None, pen_distance=None, filter_faces=None, collision_loss_weight=1000 ): """ Loss function for body fitting """ batch_size = body_pose.shape[0] joint3d_error = gmof((model_joints + camera_translation) - j3d, sigma) joint3d_loss_part = (joints3d_conf ** 2) * joint3d_error.sum(dim=-1) joint3d_loss = ((joint_loss_weight ** 2) * joint3d_loss_part).sum(dim=-1) # Pose prior loss pose_prior_loss = (pose_prior_weight ** 2) * pose_prior(body_pose, betas) # Angle prior for knees and elbows angle_prior_loss = (angle_prior_weight ** 2) * angle_prior(body_pose).sum(dim=-1) # Regularizer to prevent betas from taking large values shape_prior_loss = (shape_prior_weight ** 2) * (betas ** 2).sum(dim=-1) collision_loss = 0.0 # Calculate the loss due to interpenetration if use_collision: triangles = torch.index_select( model_vertices, 1, model_faces).view(batch_size, -1, 3, 3) with torch.no_grad(): collision_idxs = search_tree(triangles) # Remove unwanted collisions if filter_faces is not None: collision_idxs = filter_faces(collision_idxs) if collision_idxs.ge(0).sum().item() > 0: collision_loss = torch.sum(collision_loss_weight * pen_distance(triangles, collision_idxs)) pose_preserve_loss = (pose_preserve_weight ** 2) * ((body_pose - preserve_pose) ** 2).sum(dim=-1) total_loss = joint3d_loss + pose_prior_loss + angle_prior_loss + shape_prior_loss + collision_loss + pose_preserve_loss return total_loss.sum() def camera_fitting_loss_3d(model_joints, camera_t, camera_t_est, j3d, joints_category="orig", depth_loss_weight=100.0): """ Loss function for camera optimization. """ model_joints = model_joints + camera_t gt_joints = ['RHip', 'LHip', 'RShoulder', 'LShoulder'] gt_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints] if joints_category == "orig": select_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints] elif joints_category == "AMASS": select_joints_ind = [config.AMASS_JOINT_MAP[joint] for joint in gt_joints] else: print("NO SUCH JOINTS CATEGORY!") j3d_error_loss = (j3d[:, select_joints_ind] - model_joints[:, gt_joints_ind]) ** 2 # Loss that penalizes deviation from depth estimate depth_loss = (depth_loss_weight ** 2) * (camera_t - camera_t_est) ** 2 total_loss = j3d_error_loss + depth_loss return total_loss.sum()