Harmon / app.py
wusize's picture
debug
047453c
raw
history blame
9.42 kB
import gradio as gr
import torch
from transformers import AutoConfig
from transformers import AutoTokenizer, AutoModel
from PIL import Image
import numpy as np
import spaces # Import spaces for ZeroGPU compatibility
from einops import rearrange
PROMPT_TEMPLATE = dict(
SYSTEM='<|im_start|>system\n{system}<|im_end|>\n',
INSTRUCTION='<|im_start|>user\n{input}<|im_end|>\n<|im_start|>assistant\n',
SUFFIX='<|im_end|>',
SUFFIX_AS_EOS=True,
SEP='\n',
STOP_WORDS=['<|im_end|>', '<|endoftext|>'])
GENERATION_TEMPLATE = "Generate an image: {text}"
model_path = "wusize/Harmon-1_5B"
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
llm_config = config.llm
llm_config['_attn_implementation'] = 'eager'
harmon_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
harmon_model = AutoModel.from_pretrained(model_path, llm=llm_config,
trust_remote_code=True).eval()
special_tokens_dict = {'additional_special_tokens': ["<image>", ]}
num_added_toks = harmon_tokenizer.add_special_tokens(special_tokens_dict)
assert num_added_toks == 1
image_token_idx = harmon_tokenizer.encode("<image>", add_special_tokens=False)[-1]
print(f"Image token: {harmon_tokenizer.decode(image_token_idx)}", flush=True)
if torch.cuda.is_available():
harmon_model = harmon_model.to(torch.bfloat16).cuda()
else:
harmon_model = harmon_model.to(torch.float32)
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
@torch.inference_mode()
@spaces.GPU(duration=120)
# Multimodal Understanding function
def multimodal_understanding(image, question, seed, top_p, temperature, progress=gr.Progress(track_tqdm=True)):
# Clear CUDA cache before generating
torch.cuda.empty_cache()
# set seed
# torch.manual_seed(seed)
# np.random.seed(seed)
# torch.cuda.manual_seed(seed)
print(torch.cuda.is_available())
max_new_tokens = 512
image_size = 512
assert image_size == 512
image = Image.fromarray(image).convert('RGB')
image = expand2square(
image, (127, 127, 127))
image = image.resize(size=(image_size, image_size))
image = torch.from_numpy(np.array(image)).to(dtype=harmon_model.dtype, device=harmon_model.device)
image = rearrange(image, 'h w c -> c h w')[None]
image = 2 * (image / 255) - 1
prompt = PROMPT_TEMPLATE['INSTRUCTION'].format(input="<image>\n" + question)
assert '<image>' in prompt
image_length = (image_size // 16) ** 2 + harmon_model.mar.buffer_size
prompt = prompt.replace('<image>', '<image>' * image_length)
input_ids = harmon_tokenizer.encode(
prompt, add_special_tokens=True, return_tensors='pt').to(harmon_model.device)
_, z_enc = harmon_model.extract_visual_feature(harmon_model.encode(image))
inputs_embeds = z_enc.new_zeros(*input_ids.shape, harmon_model.llm.config.hidden_size)
inputs_embeds[input_ids == image_token_idx] = z_enc.flatten(0, 1)
inputs_embeds[input_ids != image_token_idx] = harmon_model.llm.get_input_embeddings()(
input_ids[input_ids != image_token_idx]
)
output = harmon_model.llm.generate(inputs_embeds=inputs_embeds,
eos_token_id=harmon_tokenizer.eos_token_id,
pad_token_id=harmon_tokenizer.pad_token_id
if harmon_tokenizer.pad_token_id is not None else
harmon_tokenizer.eos_token_id,
max_new_tokens=max_new_tokens,
do_sample=False, # if temperature == 0 else True,
use_cache=True,
# temperature=temperature,
# top_p=top_p
)
return harmon_tokenizer.decode(output[0], skip_special_tokens=True)
@torch.inference_mode()
@spaces.GPU(duration=120) # Specify a duration to avoid timeout
def generate_image(prompt,
seed=42,
guidance=3,
t2i_temperature=1.0,
progress=gr.Progress(track_tqdm=True)):
# Clear CUDA cache and avoid tracking gradients
torch.cuda.empty_cache()
# Set the seed for reproducible results
# if seed is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
print(torch.cuda.is_available())
negative_prompt = 'Generate an image.'
prompt = GENERATION_TEMPLATE.format(text=prompt)
repeat = 4
num_steps = 64
image_size = 512
assert image_size == 512
m = n = image_size // 16
prompts = [PROMPT_TEMPLATE['INSTRUCTION'].format(input=prompt)] * repeat
if guidance != 1.0:
prompts += [PROMPT_TEMPLATE['INSTRUCTION'].format(input=negative_prompt)] * len(prompts)
inputs = harmon_tokenizer(
prompts, add_special_tokens=True, return_tensors='pt', padding=True).to(harmon_model.device)
# import pdb; pdb.set_trace()
with torch.no_grad():
images = harmon_model.sample(**inputs, num_iter=num_steps, cfg=guidance, cfg_schedule="constant",
temperature=t2i_temperature, progress=True, image_shape=(m, n))
images = rearrange(images, 'b c h w -> b h w c')
images = torch.clamp(
127.5 * images + 128.0, 0, 255).to("cpu", dtype=torch.uint8).numpy()
# ret_images = [image_upsample(Image.fromarray(image)) for image in images]
ret_images = [Image.fromarray(image) for image in images]
return ret_images
# Gradio interface
css = '''
.gradio-container {max-width: 960px !important}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown("# Harmon 1.5B")
with gr.Tab("Multimodal Understanding"):
gr.Markdown(value="## Multimodal Understanding")
image_input = gr.Image()
with gr.Column():
question_input = gr.Textbox(label="Question")
understanding_button = gr.Button("Chat")
understanding_output = gr.Textbox(label="Response")
with gr.Accordion("Advanced options", open=False):
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
examples_inpainting = gr.Examples(
label="Multimodal Understanding examples",
examples=[
[
"Is the picture taken in winter?",
"view.jpg",
],
[
"Briefly describe the image.",
"view.jpg",
],
],
inputs=[question_input, image_input],
)
with gr.Tab("Text-to-Image Generation"):
gr.Markdown(value="## Text-to-Image Generation")
prompt_input = gr.Textbox(label="Prompt.")
generation_button = gr.Button("Generate Images")
image_output = gr.Gallery(label="Generated Images", columns=4, rows=1)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=3, step=0.5, label="CFG Weight")
t2i_temperature = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.05, label="temperature")
seed_input = gr.Number(label="Seed (Optional)", precision=0, value=1234)
examples_t2i = gr.Examples(
label="Text to image generation examples.",
examples=[
"a dog on the left and a cat on the right.",
"a photo of a pink stop sign.",
"Paper artwork, layered paper, colorful Chinese dragon surrounded by clouds.",
"A golden retriever lying peacefully on a wooden porch, with autumn leaves scattered around.",
],
inputs=prompt_input,
)
understanding_button.click(
multimodal_understanding,
inputs=[image_input, question_input, und_seed_input, top_p, temperature],
outputs=understanding_output
)
generation_button.click(
fn=generate_image,
inputs=[prompt_input, seed_input, cfg_weight_input, t2i_temperature],
outputs=image_output
)
demo.launch(share=True)
# if __name__ == "__main__":
# image = Image.open('view.jpg')
# image = np.array(image)
# print(image.shape)
# # text = multimodal_understanding(image, question='Is the picture taken in winter?', seed=42, top_p=None, temperature=None)
# # print(text)
# res = generate_image('Paper artwork, layered paper, colorful Chinese dragon surrounded by clouds.')
# for idx, img in enumerate(res):
# img.save(f"{idx}.jpg")